AD-A266 463
ER

Using Multiple Adaptively-Weighted Strategies
for the Resolution of Demonstratives
Ralf D. Brown

10 May 1993
CMU-CS-93-148

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfiliment of the requirements

for the degree of Doctor of Philosophy ;‘\3 T i (:
5 SLECTE
Thesis Committee: &8 061993
Jaime G. Carbonell, Co-chair . N
Masaru Tomita, Co-chair B i3 ‘
Sergei Nirenburg E
Deborah Dahl, Unisys 4

R

Copyright © 1993 Ralf Brown

This research was partially supported by the Camegie Mellon University School of Computer Science.

R —— 93-151g7
98 2 0. , . LTI

. -
Keywords: Natural language processing, téﬁ!bncg resolution, demonstratives

DOCTORAL THESIS
in the field of
Computer Science

School of Computer Science

Using Multiple Adaptively-Weighted Strategies

for the Resolution of Demonstratives

RALF BROWN

Submitted in Partial Fulfillment of the Requiremems
for the Degree of Doctor of Philosophy

Accesion For

e

NTIS CRA&J
OTIC TAB [

U.anr ounced

Ju.‘l h 4! ‘QJ

Di;i’fib&i}oé’i"

Availability Codes

DTiC QUL LIT: tnEYECTED 8 Availl and/or

Dist Special

ACCEPTED: /

/(/?1/ @ZJ UETLS
THESIS COMMITTEE CHAIR DATE
DEPARTMENT HEAD DATE
APPROVED:
T2 T<M 71y [i

T g DEAN 4 o7 DATE

Table of Contents

1. Introduction

2. Background
2.1. Attributes of a Demonstrative
2.2, Classes of Demonstratives
2.3. Relative Frequencies of Use

2. The Multi-Strategy Approach

3.1. Example Resolutions
3.1.1. Short Example
3.1.2. Long Example

4. Related Work

4.1. MARS

4.2. Lucy anaphora resolver

43.SPAR

4.4. KBMT-89 Augmentor

4.5. Capture

4.6. Susan McRoy’s Word Sense Discriminator
4.7. Webber’s Referent,,,

4.8. PUNDIT

5. The MASTER-D Architecture

5.1. User Interface

5.2, Parser and Generator Interfaces
5.3. Collecting Candidate Referents
5.4. Strategy Applier

5.5. World Modeling

6. The Resolution Strategies
6.1. Constraint Strategies
6.2. Preference Strategies
6.3. Recovery Strategies
6.4. Resolution Strategy Invocation
6.5. Scope
7. Adaptive Strategy Weighting
7.1. Strategy Weighting

7.2. Strategy Ordering
7.3. Adaptive Reweighting

8. Implementation Details

8.1. Strategy Applier
8.2. Reweighting

8.3. Candidate Determiner

8.4. World Modeler

8.5. Adding New Strategies

8.6. Low-Level Input/Output
8.6.1. Unix TERMCAP Interface
8.6.2. Unix Socket Interface

9. Testing Protocol

9.1. Performance Measurement
9.2, Test Data
9.3. Questions to be Answered
9.4. Biases

10. Performance and Test Results
10.1. Accuracy without Reweighting
10.2. Accuracy with Reweighting
10.3. Strategy Weights
10.4. Speed
10.5. Conclusions

11. Contributions

12. Possible Enhancements

12.1. Intrasentential Demonstrative References
12.2. Anaphoric Pronouns and NPs

12.3. Additional Strategies

12.4. Other Reweighting Methods

12.5. Learning

12.6. Parallelization

Appendix A. Annotated Trace
Appendix B. Selected Source Code

B.1. Strategy Applier
B.2. Strategy Reweighting Mechanism
B.3. Resolution Strategies

Appendix C. Knowledge Base
Appendix D. Sample Texts
Appendix E. References

157
171
179

List of Figures

Figure 2-1: Relative Frequances of Types Among 200 Demonstratives

Figure 4-1: MARS Architecture

Figure 4-2: Resolution Process in MARS

Figure 4-3: Outline of SPAR Processing Strategy

Figure 4-4: KBMT-89 Augmentor Architecture

Figure 4-5: KBMT-89 Augmentor Screen

Figure 5-1: MASTER-D Architecture

Figure 5-2: User Interface Architecture

Figure 5-3: MASTER-D Screen Display

Figure 5-4: A Multiple-Selection Menu

Figure 5-5: Parser and Generator Interface Architecture

Figure 5-6: Strategy Applier Architecture

Figure 6-1: Applying Resolution Strategies in MASTER-D

Figure 6-2: Type of Demonstrative References Supported by MASTER-D

Figure 8-1: Sample Strategy Definition

Figure 10-1: Summary of Resolutions without Reweighting

Figure 10-2: Resolution Accuracy without Reweighting

Figure 10-3: Summary of Resolutions with Fixed-Percentage Reweighting

Figure 10-4: Summary of Resolutions with Incremental Reweighting

Figure 10-5: Summary of Resolutions with Incremental Reweighting, Second
Run

Figure 10-6: Resolution Accuracy with Various Reweighting Methods

Figure 10-7: Summary of Weight-by-Accuracy Tests

Figure 10-8: Resolution Accuracy with Weight-by-Accuracy Reweighting

Figure 10-9: Comparison of Morolithic and Individual Reweighting of
Substrategies

Figure 10-10: Summary of Resolutions with Corrected Weight-by-Accuracy

Figure 10-11: Resolution Accuracy with Corrected Weight-by-Accuracy

Figure 10-12: Strategy Weight Statistics at End of a Test Run

Figure 10-13: Change in Strategy Weights over Time

Figure 10-14: Final Strategy Weights

Figure 10-15: Execution Profile for a Test Run

Figure 10-16: Summary of Correct Resolutions

Figure 10-17: Upward Reweightings on Various Strategies

Figure 12-1: A Parallelized Implementation

Figure 12-2: A Massively Parallel Implementation

Figure A-1: Loading MASTER-D

Figure A-2: MASTER-D loading its configuration

Figure A-3: Opportunity to change setttings

Figure A-4: MASTER-D initialized and starting

Figure A-5: Option to overwrite existing output file

Figure A-6:

Figure A.7:

Figure A-8:

Figure A-9:

Figure A-10:
Figure A-11:
Figure A-12:
Figure A-13:
Figure A-14:
Figure A-15:
Figure A-16:
Figure A-17:
Figure A-18:
Figure A-19:
Figure A-20:
Figure A-21:
Figure A-22:
Figure A-23:
Figure A-24:
Figure A-25:
Figure A-26:
Figure A-27:

iv

Canonicalizing the first parse
Processing the first sentence
Verifying first resolution
Strategies Reweighted
Processing second sentence
Asking user for reference type in third sentence
User selected reference type
Processing third sentence
Processing nearing completion
Verifying second resolution
Reweighting strategies
Storing resolved parse
Beginning processing of fifth sentence
Asking user for reference type
User selected reference type
Applying strategies
Processing continues
Processing nearing completion
Asking user to disambiguate
End of parse file reached
MASTER-D Command Menu
MASTER-D shut down

Using Multiple Adaptively-Weighted Strategies
for the Resolution of Demonstratives

Abstract

The resolution of demonstratives is an interesting topic which nonetheless has received relatively little
attention. As with pronominal anaphora, there is currently no comprehensive theory of demonstrative
references, although there are numerous partial or microtheories. This dissertation describes a
multistrategy approach to resolving demonstrative pronouns and noun phrases, using coustraint, preference,
and recovery strategies implementing various microtheories and beuristics. The multistrategy approach,
which has proven itself for resolving pronominal anaphora, allows easy integration of new microtheories.
This provides incremental improvements in performance, permitting a decreasing reliance on user
intervention as the system is able to resolve a larger percentage of demonstratives. A major weakness of
the multistrategy approach, the necessity to carefully choose the weights of the strategies, is overcome by
automatically optimizing the weights as demonstratives are resolved. Such an adaptively-weighted
multistrategy approach has been implemented in the modular and extensible MASTER-D system which is
expected to be applicable to other linguistic phenomena in addition to the resolution of demouastratives.

Chapter 1
Introduction

One of the most comumon constructions in natural language is the referring expression. Referring
expressions have numerous roles in language; for example, they may sborten an utierance by using a brief
phrase in place of a full description, they may add more information to a previous description of the same
disoourse object, or they may simply allow monotony to be avoided by using varying references (o the
same discourse object.

An example text in which all three of the above uses are exhibited in the following article from the May
15, 1982 The Times:

PRIEST IS CHARGED WITH POPE ATTACK (Lisbon, May 14)
A Spanish priest was charged here today with attempting to murder the Pope.

Juan Fernandez Krohn, aged 32, was arrested after @ man armed with a bayonet approached
the Pope while he was saying prayers at Fatima on Wednesday night.

According to the police, Fernandez told the investigators today he trained for the past six
months for the assauit. He was alleged to have claimed the Pope ‘looked furious’ on hearing the
priest’s criticism of his handling of the church’s affairs.

If found guilty, the Spaniard faces a prison sentence of 15-20 years.!

In this text, the priest is referenced a total of eight times in seven different ways, of which five references
are abbreviated versions of prior references. Each of the first three references adds more information (o the
reader’s model of the priest, until the reader has a mental model of "Juan Femandez Krobn, age 32, a
Spanish priest who attacked the Pope with a bayonet” Finally, the article avoids monotonous repetition by
using a different reference each time but one that the priest is mentioned.

As shown to sams extent in the example te: shove, there are numerous types of referring expressions,
such as pronouns, definite noun phrases, and demonstratives; similarly, many different classes of entities,
such as objects, actions, and time intervals, may be referenced. Demonstratives are more speaker-oricnted
than most referring expressions; they act much like a pointer from the speaker to the referenced entity, and
are frequently accompanied by pointing gestures when spoken. Kenneth Goodman suggested an alternate
title for this dissertation, Now Here This, which shows three of the dimensions in which demonstratives can
point: time, location, and relationship to the speaker (such as distance).

“This is & simplified version provided by Sergei Nireoburg.

4

The core of this dissertation is the MASTER-D (Multiple Adaptively-weighted STratEgies for Resolving
Demonstratives) system. This system uses multiple independent but cooperating resolution strategies, each
implementing a microtheory or heuristic, whose weights in voting for candidate referents are adjusted
based on past performanc .. Error recovery is provided in the form of additional strategies which attempt o
produce further cardic .. referents or select one of multiple candidates which are nearly equally preferred.

Several of the components of the MASTER-D system woulc themselves be worthy dissertation lopics,
and zie thus present in a simplified form. Among these are world modeling and discourse analysis. The
sunple world modeler and discourse analyzer used by MASTER-D will frequently indicate that they are
unable to give any information about a particular item. As will be shown, ooe of the strengths of the
approach used here is that it can continue to operate successfully (though somewhat less accurately) even
when given incomplete information.

Although *his dissertation makes no claims that MASTER-D models buman cognitive processes, there is
mounting evidence that the human brain uses muitiple paralle] mechanisms in various activities. To dates,
there is evidence that the human brain uses multiple parallel mechanisms in language and vision processing
and a suggestion that multiple mechanisms are involved in motor functions.

The case of an elderly woman suffering from brain damage to both temporal lobes and small patches
elsewhere suggests that the brain uses separate knowledge systems for visual and verbal knowledge [4, 24].
This woman exhibited an inability to name animals when presented with their pictures or characteristic
sounds, yet had no difficulty naming other living things or inanimate objects given those cues. Testing
revealed that she lacked verbal knowledge of animals’ physical attributes, yet could visually match heads
and bodies and identify when an animal was portrayed with the wrong color (though she was unable to
name the correct color). Hart and Gordon conjecture that the verbal system contains subdomains of
knowledge, allowing the woman to identify other attributes of an animal from its name even though she
was unable to identify visual physical attributes of the same animal when given its name.

The visual cortex similarly uses muitiple parallel processing methods whose results are later
combined (44]. Each scene seen by the eyes is replicated to a dozen different areas of the visual cortex
which extract movement, color, outlines, etc.

The suggestion of multiple methods in motor function comes from a patient suffering induced
Parkinsonism from a contaminated dose of synthetic heroin {34]. The patient suffers the rigidity of
Parkinson’s disease and will "freeze” while walking. If asked to perform a slightly different motion such as
raising a foot or stepping over a small obstacle, he is then able to continue walking for a period of time.
One bypothesized explanation is that there are two or more parallel “circuits”, each of which stops
functioning when overworked; performing the alternate action allows a different circuit 1o take over the
action of walking.

This evidence that multiple parallel mechanisms are used by the human brain lends some plausibility o
the use of multiple strategies in a computer program for processing referring expressions in vatural

language. Plausibility, of course, does not prove that this is in fact how the bumain brain processes
referring expressions even though other mental processes do appear to use this metbod.

The remainder of this dissertation is organized into five main topic sections as follows:
1. Background: Demonstratives, The Multi-Strategy Approach, Related Work

2. MASTER-D: Architecture, Resolution Strategies, Adaptive Weighting, Implementation
3. Results: Testing Protocol, Test Results, Contributions

4. Future Work: Possible Enhancements

S. Appendices: Annotated Trace, Selected Source Code, Knowledge Base, Sample Text

Chapter 2
Background

As mentioned in the introduction, one of the most common constructions in natural language is the
referring expression, of which demonstratives are one type. More so than most referring expressions,
demonstratives are speaker-orienied, acting much like a pointer from the speaker 1o the referenced entity.

A restatement of the above is that demonstrative probouns and noun phrases are examples of deictic
referring expressions®. As with all deixis, the exact meaning of demonstratives depends on the context in
which they are uttered--among other factors, where, when, and by whom (the Origo or zero point of
Biibler’s "deictic field of language” (8, 9]). This differentiates them from anaphoric pronouns and definite
noun phrases, whose meaning depends on the entities in the prior discourse and only occasionally and
indirectly on the context of the vtterance. Webber [45] also states that the referent,, (see Section 4.7, page
32) of an anaphoric NP may be something associated with the current focus, while that of a deictic NP must
already be present in the focus.

In addition to their deictic properties, demonstratives also share properties with anaphoric pronoums and
definite noun phrases. It is these similarities which will allow some of the strategics used by multi-strategy
anaphora resolvers to apply unchanged to demonstratives. Demonstrative noun phrases, in particular, are
very similar to definite noun phrases; in Alshawi’s terminology, they are definite NPs with deictic
determiners [1]. Thus, demonstrative NPs carry constraints such as number and gender (the latter supplied
by the bead of the noun phrase in English) which must be satisfied by their referents, just as is the case for
definite noun phrases.

Although there are numerous other demonstrative words, discussion of demounstratives other than this,
that, these, and those will largely be omitted. By narrowing the focus to those four words, the following
text will 1« less cluttered and hopefully clearer. Further, here, there, now, and then have quite restricted
uses by comparison, and would not add to the discussion.

2Not all linguists would agree with this statement, but it is ot of any particular importance to this dissertation whether or not
demounstratives are in fact deixis.

2.1, Attributes of a Demonstrative

Demonstratives contain a number of inhereat atiribute values which can be used in narrowing the space of
possible referents. The prototypical attributes of English demonstratives are conceptual distance and
number; demonstrative NPs may also gain attributes from the head of the NP. Many otber languages have
additional attributes such as visibility (e.g. Chinook {2]).

The distance attribute of Englisb demonstratives may be either "near™ or “far”, depending on spatial and
temporal aspects, how closely the referenced items are associated with the speaker, or even bow focused
the entity is in the immediately preceding discourse. Demonstratives with "near” proximity include this,
these, here, and now; demonstratives with "far” proximity include that, those, there, and then. Other
languages make finer distinctions such as "near”/"further”/"far” (e.g. Spanish, Navabo or Thai [10]) or
“nearer to listene.” (e.g. Navaho [41]).

Similarly, the number attribute may be either "singular” or "plural”; for example, this and thar are
singular while these and those are plural. In the case of locatives like “here”, the number is usually
implicitly singular since demonstrative locatives generally refer to a single location.

MASTER-D uses both the proximity and number attributes when resolving a demonstrative. It does not
attempt to deal with the additional or finer distinctions used by other languages at this ime, although that
capability could be added quite easily.

2.2. Classes of Demonstratives

As might be expected from the different kinds of entities to which a reference may be made and the
different ways in which they may be referenced, there are a number of classes of demonstrative references.
The following taxonomy will be used as a reference in the remainder of this document It is oot meant to
be a definitive classification of demonstratives; it need not be, since MASTER-D uses the class of a
demonstrative as just another piece of information to be applied in the resolution process, lack of which

does not make resolution impossible.
1. Object Reference
A specific object or set of objects previously mentioned may be the referent of a
demonstrative, as in those people or this building.

2. Property Reference
Sometimes, a demonstrative refers only to a property of an object, rather than the object itself,
as in
The pale green pants look nice.
I want a shirt in thatcolor.

3. Event Reference
Some demonstratives refer to one or a set of situations or events, either current at the time of
the utterance or mentioned in the prior discourse. For example, this meeting, that emergency,
or those events.

4. Action Reference
An action may be referenced by a demonstrative, as in

9

John wanted to surprise Mary with a present yesterday.
Did he do that?

5. Temporal Reference

Demonstrative NPs may reference some point or interval of time, as in this evening or that
day. Phrases of the form this X generally refer 10 a time in relation ¢ the time in the
utterance, while that X generally refers to a time related to one mentioned in the prior
discourse, as in

The day Joe met Sally was not a good one for Joe.

He had cut himself shaving thatmoming, and things had gone

downhill from there.

6. Locative Reference
A demonstrative may refer to a particular point in space, such as
We camped out on thathill for several days.
or to a particular direction, as in
He went thatway.

However, such a locational phrase need not have a referent in the prior discourse, as it may in
fact be an extralinguistic reference (see below).

7. Discourse Reference
A demonstrative may also refer to the prior discourse itself, rather than some eutity within it
The demonstrative’s referent may be part or all of a discourse segment, or some aspect
thereof other than the surface form, such as the speech act{45]. One of Webber's
examples [45] is
Hey, they’ve promoted Fred to second vice president.
That's a lie.

8. Lexical Reference
This type of reference is distinguished from other discourse references because the referent is
the actual utterance rather than the meaning of the utterance, as in
Decisions and feelings and positions taken today will have, I
believe, major impact on the world.
That's a strange phrase for a business person to ever
utter. [27]

9. Logical Reference
Many statements in natural language express logical predications or logical propositions, and
these logical statements are distinct entities which may be referenced in ensuing utterances.
For example,

Mary told me that Sue canspeak French.
I wasn’t aware of that.

10. Non-literal Reference
As is the case with definite NPs and anaphoric pronouns, demonstratives need not literally
refer to a discourse entity. The demonstrative may instead be used in an idiomatic,
metonymic, or metaphoric fashion. For example, in the idiom
That’s the way the cookie crumbles.

that references an undesirable event or situation in the prior discourse, rather than a
description of the manner in which cookies desintegrate.

11. Quantifier/Selector

A demoustrative is occasionally given a postmodifying restrictive relative clause.
Constructions such as those X who Y or those X that Y fr X null or a noun phrase and Y a
relative clause create a2 new discourse entity of the set of all X which match the constraints of
Y. The noun phrase X need not refer to any entities in prior discourse. Similarly for the
construction that which Y. For example,

It‘s appropriate that those who understand this wondrous stuff take

on that challenge, but let us remember that there is an issue

of public trust here as well. [27]

10

A third area of value derivation is that which enables the user to
achieve the desired result.

The X may also be a prepositional phrase, as in
{Moderator announces that only two more audience
questions will be taken]

My apologies to those of you that were further back in the
line. (27}

12. Placeholder
A singular demonstrative noun phrase may specify an indeterminate member of the set
evoked by the bead of the NP, as in
...and we took a piece out of thiscompetitor’'s system, we
took a piece out of thiscompetilor’'s system....
Similarly, a plural demonstrative NP may specify an indeterminate subset of the set evoked
by the bead noun, as in
And frankly, back then, that was the way that you bhuilt
software.

Let’s start where theseguys are and let’s see what we
could innovate beyond that. [27)

13. Comparison
This and that may also be used in an adjectival phrase comparing two discourse entities, i.c.
Is it really that big?
For the special case of a lacking referent in the prior discourse, that degenerates into meaning
very, as in
It’s not that important.

14, Epithets
Demonstrative NPs may convey the speaker’s opinion of or attitude toward the referent, as in
that bastard. Epithets are also commonly combined with non-literal reference, as in
1 called New York.
Those idiots lost your application again.

15. Cataphoric or Polarcid® Demonstrative
Sometimes a demonstrative pronoun or NP precedes the full description of the entity being
refesred (o by the pronoun or NP. In this case, the demonstrative serves merely to introduce a
new discourse entity, whose “shape” will become clear as the discourse cootinues and
provides more information about that entity. A complication arises because the entity
introduced by the demonstrative may be referred to by pronouns even before it has been
fully-developed by the ensuing discourse. For instance [27],
.. at the same time (and I think that rthis is an eguivalent
good) it must enable successful companies to flourish.

This is my position, not Lotus Development Corporation (I
don’t think we would differ much).
Basic tools, we believe, should be open.

Note that cataphoric demonstratives are not a totally separate class, but rather a variation on
the other classes in the taxonomy. Thus, a cataphoric demonstrative will also belong to one
of the other classes indicating the type of entity referenced by the demonstrative,

The indefinite singular this is always catapboric, This usage does not refer (o any existing

’nﬁslmnhundinmlogyMM’lewdwm'MwwummdMMJm
references after their actual occurrence. No implication of association with the Polaroid Corporation, which owas the trademark
Polaroid. is istonded.

11

entities, but serves merely to introduce a new catity as would the indefinite articles @ and and.
[19]

So, thisman walks into the bar and ...

16. Extralinguistic Reference
In spoken discourse, a demonstrative may accompany a gesture such as pointing. The
pointed-at object or location then becomes the referent of the object or location implied by the
demonstrative. For example,

Put the box there (points at corner of room).

Similarly to cataphoic references, extralinguistic references are not a totally separate class, as
the extralinguistic entity being referenced may be a member of any one of a majority of the
other classes.

In addition to its role as a demounstrative, the word that is also used as a relativizer. In fact, the use of
“that” in relative clauses is considerably more common than use as a demonstrative (see the next section).
The analyzer is expected to distinguish between use in a relative clause and use as a demonstrative.

Similarly, the word this also has an alternate use as a singular indefinite, which was mentioned above.
The parser is expected to make this distinction as well.

As previously stated, the above taxonomy is not meant to be definitive. There may be better ways
classify demoustratives or additional cases which are not covered in this taxonomy. For example, there
may be a demonstrative analogue to the "pronouns of laziness” discussed by Hintikka and Kulas in the
context of their Game-Theoretical Semantics {25]. Pronouns of laziness act as though the referent were
lexically substituted for the pronoun and then re-interpreted in the resulting seatence, such as in so-called
"paychbeque sentences” like

The man who gave his paycheque to his wife was wiser than the man who
gave it to his mistress. [3]

The phrase do that appears to be such a construct in certain countexts.

2.3. Relative Frequencies of Use

The previous section stated that rhar appears more frequently in its pondemonstrative role as a relativizer
than as a demonstrative. To illustrate, the count of occurrences of this, fhat, these, and those in
demonustrative pronouns, demonstrative NPs, and nondemonstrative uses will be presented for three
different texts.

The first example consists of the first ten chapters (pages 1 through 64) of the science fiction novel Rama
{I{15). This text consists primarily of narrative which introduces the characters and sets the background
(including "history” through the year 2199). The breakdown of the different uses is as follows:

THIS THAT THESE THOSE
demonstrative pronoun 16 16 1 4
demonstrative NP 59 43 24 11
non-demonstrative — 232 - —

As might be expected from the large proportion of narrative text, demonstrative NPs are more common
than demonstrative pronouns. In contrast, dialogues would be expected to skew more towards pronouns,

12

particularly the pronominal use of "that” (especially "that is” referring to prior discourse). The transcript of
a panel discussion on intellectual property rights and the following audience participation [27] shows this to
be the case:

THIS THAT THESE THOSE
demonstrative pronoun 64 180 7 11
demonstrative NP 78 81 26 12
non-demonstrative - 536 —_ —

Not surprisingly, there are more occurrences in all nine categories, even though the anscript contains
approximately the same amount of text as the novel excerpt (about 20,000 words). For this text, 57.1% of
the demonstratives are demonstrative pronouns, more than twice the 21.3% in the previous sampie. In
addition, the increased proportion of demonstratives is reflected in a higher percentage of demonstrative
uses of that—-32.7% compared to 20.3% in the novel.

The third text examined bere is the sequel o Rama II. The first thirteen chapters of The Garden of
Rama [14] are presented in the form of a personal journal, and are mostly first-person narrative text with a
few quotations. One would thus expect the distribution among the nine categories to be similar to that
found in Rama II. The first seven chapters, pages 3 through 60, confirm the expectation with the following
distribution:

THIS THAT THESE THOSE
demonstrative pronoun 6 14 2 0
demonstrative NP 50 27 7 15
non-demonstrative — 263 —_ —

This is indeed similar to the distribution found in Rama II, though the demonstratives are skewed
somewhat moare toward NPs (81.8% of demonstrative uses compared to 78.7%), and a smaller proportion
of the occurences of that are demonstrative (13.5% compared to 20.3%). The distribution contrasts
significantly with the panel discussion’s distribution, where only 42.9% of the demoustratives were NPs
and demonstrative uses accounted for fully 32.7% of the occurrences of that.

The first 200 of the 459 demonstratives used during the panel discussion can be classified as in the first
column of Table 2-1 using the taxonomy presented easlier. Similarly, the first 200 demonstratives in the
excert from Rama II can be classified as in the second column of Table 2-1. The totals are greater than 200
because some occurrences fall into two classes, such as the extralinguistic or cataphoric category in
addition to some other category. Further, one common idiomatic construction which is always in multiple
classes is “that is, X", where "that is" is a cue phrase indicating a restatement or clarification of something
as "X"; the "that" can be considered either an idiom or a reference of the appropriate type to both "X" and
the entity being restated.

As can be seen from the table, object references dominate. The differing genres of text and differing
subject matter affect the next most-frequent classes of references; since the panel discussion is mostly
dialogue, it contains many discourse references, while the novel excerpt presents a history and thus
contains many temporal and event references. The discourse references in Rama Il are due to the dialogue

preseat in later parts of the excerpt.

It is worth noting that a number of the demonstratives in the transcript (though none of the first 200) are

13

Panel Rama II
Object reference 91 115
Property reference 2 0
Discourse reference 45 12
Temporal reference 8 23
Event reference 5 29
Action reference 9 4
Locative reference 5 3
Lexical reference 6 1
Logical reference 14 3
Non-literal reference 3 2
Quantifier/selector 6 4
Placeholder 4 0
Comparison 1 S
Epithet 0 2
Cataphoric demonstrative 8 1
Extralinguistic reference 8 6

Figure 2-1: Relative Frequences of Types Among 200 Demonstratives

in fact relativizing uses of that. They occur in sentences which bave been malformed such that the thas
appears as a demonstrative, even though a human can infer that it was intended to be a relativizer. The
primary reasons for such malformation are interruption and mid-sentence change of the utterance.

An important advantage of the multistrategy approach is that it is not necessary to classify each
demonstrative in order to resolve it. If the demonstrative can be classified, the knowledge of its type can
help the resolution process, but lack of that knowledge will not make resolution impossible. At worst, the
system’s resolution accuracy will be degraded because the strategies can not be applied in a targeted
manner,

14

15

Chapter 3
The Multi-Strategy Approach

As the introduction stated, there is currently no complete linguistic theory of demonstratives; thus no
single monolithic resolution strategy is available. Instead, there are numerous partial or microtheories and
various heuristics which may be applied in varying situations. By using multiple of these knowledge
sources, we may increase coverage and thus improve the accuracy with which the referents of
demonstratives are determined. As additional knowledge is gained, more strategies may be implemented,
producing better coverage and accuracy, and reducing the reliance on user intervention.

In addition to increased coverage, the multi-strategy approach offers easy parallelization since the
resolution process is already broken into largely or entirely independent portions (the individual strategies).
Depending on the number of available processors, one can distribute the evaluations of candidates in
various ways:

1. one processor per group of strategies

2. one processor per strategy, evaluating all candidates with that strategy
3. one processor per candidate, applying all strategies to that candidate
4. one processor for each candidate/strategy pair

A separate processor then combines the results produced by the others.

Many different methods are possible for orchestrating the application of multiple strategies:
1. Apply all strategies to each candidate in turn.

2. Apply each strategy in turn to all candidates.

3. Group strategies and apply each group in tum to all candidates.

4. Individually apply strategies to all candidates until one candidate is sufficiently preferred.
3. Conditionally apply strategies based on the number of candidates remaining.

6. Allow one or more strategies to determine which of the remaining strategies will be applied to
each candidate.

7. Allow one or more strategies to direct the order in which the remaining strategies are applied
o the candidates.

8. Allow one or more strategies to direct the order in which candidates are processed by the
remaining strategies.
The method of application used here is to divide the strategies (knowledge sources) into four distinct
groups: constraints, preferences, and two groups of recovery actions. All strategies in the constraint group

16

are applied; if no candidates remain, one group of recovery actions is invoked to expand the candidate
space; if multiple candidates remain, all strategies in the preference group are applied. Should no single
candidate attain a distinctly greater preference than the others, the second group of recovery actions is
applied in an attempt to narrow the set of most-preferred candidates 1o a single one. (see Chapter 5 and
Section 6.1 for more details)

In addition to the various manners in which strategies may be applied, there are also several possible

methods for combining the results of individual strategies:
1. If two or more strategies are applicable to the candidate and give conflicting results, use only
the result from the highest-weighted strategy.

2. If more than two strategies are applicable to the candidate and give conflicting results, use the
result returmed by the greatest number of strategies.

3. Give each strategy a number of votes proportional to its weight. The candidate receiving the
greatest number of votes is considered the correct candidate.

MASTER-D employs a slightly modified voting scheme. Each strategy returns a number in the range
-1.0 to 1.0 (inclusive) or, if it is a constraint strategy, a special indicator that the candidate should be ruled
out*. The value 1.0 indicates maximum preference for the candidate, -1.0 indicates the knowledge source’s
certainty that the candidate is not the correct one, and 0.0 indicates no preference either way (possibly
because the knowledge source does not apply to the candidate). Intermediate values indicate varying
certainty that the candidate is or is not the correct one. The central application mechanism muitiplies each
returned score by the appropriate weight and sums the weighted scores.

The main disadvantage of the multi-strategy approach is its sensitivity to the weighting of the individual
strategies. Since not all strategies have equal predictive power or accuracy, the strategies should not be
weighted equally. Instead, the more accurate strategies should receive a greater weight than the less
accurate strategies. However, finding the optimal set of weights for strategies quickly becomes too tedious
to perform manually, even assuming that a fixed set of weights is optimal for ail texts. The solution to this
problem is to automatically reweight the strategies based on their prior performance; this adaptive
weighting is discussed in Chapter 7.

The use of multiple knowiedge sources has become quite popular over the past decade. Systems using
such an approach include MARS, SPAR, Lucy, Capture, and Susan McRoy's word sense discriminator, all
of which will be discussed in some detail in the next chapter.

“Coustraint strategies may thus also indicate a preference among those candidates which are not ruled out.

17

3.1. Example Resolutions

A few examples will greatly aid in understanding the application of the multiple strategies in MASTER-

D. For these examples, the following strategies will be used:

1. Gender C. astraint
The gender of the candidate referent must match the gender of the demonstrative. Prefer
those candidates for which the gender is identical to the demonstrative and not just
compatible.

2. Number Constraint
The number (singular/plural/etc) of the candidate must match the number of the
demonstrative. Prefer those candidates for which the number is identical to the demonstrative
and not just compatible.

3. Reference Type
The type of entity represented by the candidate antecedent must match the type of entity
expected in place of the demonstrative; i.e. a demonstrative filling in for an event cannot have
as referent a candidate representing an action.

4. Recency Preference
Prefer candidates which are closer to the demonstrative over those which are further away.

5. Ask the User
When multiple candidates are equally (or nearly equally) preferred, present them to the user
and allow her to select the desired referent.

3.1.1. Short Example

The first example is from page 59 of Rama /7 {15). It will be resolved using strategy weights of 10 each
for the preference portion of the gender and number constraints, and 10 for the recency preference strategy.

"You wrote in your letter,” the Holy Father said, without referring to any notes, “that there were
some theological issues that you would like to discuss with me. I assume these are in some way
related to your mission.”

‘We begin by listing the candidates. In the context in which the above passage occurs, the two sentences
are the first two spoken by the character, so there are no candidates from previous sentences. The
candidates for resolving the these in the second sentence are therefore only those found in the first
sentence,

You wrote in your letter that there were some theological issues that you would like to discuss
with me. .
which are

Action: write a letter

Action: discuss

Object: letter

Objeci: theological issues

Object: speaker of utterance (me)

Object: hearer of utterance (you)

For this example, the demonstrative carries no gender information, so no candidates are eliminated by the

Gender Constraint strategy. The Number Constraint strategy is applied next, and rules out "letter”, "me”,
and "you". It also prefers "theological issues”, the only plural candidate. This leaves the following

candidates:

18

Action: write a letter score: 0
Action: discuss score: 0
Object: theological issues score: 10

The third strategy to be applied is Reference Type. Since the demonstrative is the subject of the verb are,
it should be coreferential with a noun, i.e. its reference type for the purposes of this example is Object.
Note that a system with sophistication beyond the scope of this example might create candidates such as
"desired discussion” which are related to non-Object candidates but are themselves of type Object. This
would be required to handle cases such as

John and Mary repeatedly discussed the design of their software. These discussions eventally
led to the specification for the Lettuce A-B-C spreadsheet.

For the demoustrative under discussion here, the Reference Type strategy rules out all but one candidate:
Object: theological issues score: 10

Since only a single candidate remains, it is not necessary to apply any other resolution strategies. The
remaining candidate is the desired referent, which leads to a reading of the second sentence as

I assume the theological issues are in some way related to your mission.

3.1.2. Long Example

The second example will be a somewhat simplified version of the test case whose annotated trace is
shown in Appendix A:

"Copyright on a user interface would mean that each ty, -writer manufacturer would be forced
to arrange the keys differently.”

By my description, the letters of the aiphabet would be tools. Of course those sbould be open.

This passage will also be resolved using strategy weights of 10 each for the preference portion of the
gender and number constraints, and 10 for the recency preference strategy. The score produced by the
recency preference will decrease by two points for every sentence between the sentences containing the
demonstrative and the candidate antecedent.

Again, we begin by listing the candidates. In the interest of brevity, some candidates which do not affect
the outcome will be omitted. Additionally, such candidates as arise from phenomena not addressed by the
strategies used for this example will be omitted. The initial list of candidates is

Object: copyright

Object: user interface

Object: typewriter manufacturer

Object: keys

Object: letters of the alphabet

Object: tools

Action: force

Action: arrange

Discourse: the letters of the alphabet would be tools
Lexical: "Copyright on a user interface..."

Lexical: "the letters of the alphabet would be tools.”

19

In this case, the Gender Constraint is unable to rule out any candidates, since all candidates have
indeterminate gender. The Number Constraint strategy, on the other hand, is able to rule out several
singular candidates, leaving

Object: keys score; 10
Object: letters of the alphabet score: 10
Object: tools score: 10
Action: force score: O
Action: arrange score: 0
Discourse: the letters of the alphabet would be tools score: 0
Lexical: "Copyright on a user interface...” score: 0
Lexical: "the letters of the alphabet would be tools." score: 0

Note that Number Constraint has not ruled out the Action, Discourse, or Lexical candidates because these
do not bear number information and are thus treated as being of indeterminate number. Indeterminate
number is compatible with any other number information, though it cannot make an exact match which
would be preferred with a positive score.

Applying the Reference Type strategy results in the invalidation of all non-Object candidates, leaving

Object: kevs score: 10
Object: letters of the alphabet score: 10
Object: tools score: 10

Since multiple candidates remain after applying the constraint strategies, the preference strategy is
applied next. It gives its full weight of ten points to the candidates from the immediately preceding
sentence, and a lesser weight of eight points to the candidate from the next-to-last prior sentence. After the
recence strategy completes, the scores are as foffows:

Object: keys score: 18
Object: letters of the alphabet score: 20
Object: tools score: 20

Since there is a tie for most-preferred candidate, the resolution process proceeds to apply the recovery
strategy, Ask the User, presenting the following two candidates:
Object: letters of the alphabet
Object: tools
Once the user selects "tools™ as the desired referent, the system is able to retum the result that
Of course those should be open.
should be read as
Of course tools should be open.

20

21

Chapter 4
Related Work

There has been surprisingly little work done on determining the referents of demonstrative pronouns and
NPs, 8¢ »sed to anaphoric pronouns and NPs., Demonstratives are typically given only passing mention
or a foutnote in works on anaphora, and are rarely the main topic of a paper. For this reason, much of the
related work discussed in this chapter relates to pronominal anaphora rather than demonstratives.

The MASTER-D system has been influenced by two prior pronominal anaphora resolution systems and
an earlier user interface. The strongest influences are from my own previous work on the MARS
system [6, 11]; the Lucy anaphora resolver [32, 38] and the KBMT-89 Augmentor interface 6, 7] have
provided additional ideas. Further, Carter’s SPAR system [12, 13] parallels MARS, Lucy, and MASTER-
D in a number of aspects. These systems and others are discussed in more detail below. The final sections
of this chapter will discuss additional systems and how they make use of the multi-strategy approach and
treat or do not treat demonstratives.

4.1. MARS

The MARS (Multiple Anaphora Resolution Strategies) system resolves both anaphoric pronouns and
definite noun phrases using multiple independent constraint and preference strategies rather than a single
monolithic strategy.

After each sentence has been analyzed, the resulting parse is scanned for pronouns and definite noun
phrases. Each of the pronouns and definite NPs is passed through the anaphora resolver in um. After the
entire sentence has been thus processed, the pronoums and definite NPs are added to the pool of candidate
referents for subsequent sentences. Candidates which have been in the pool for more than a pre-set number
of sentences are removed to prevent unbounded growth in the set of candidates to be checked for each

anaphor.

The MARS anaphora resolver applies a set of constraint strategies to each candidate referent, then applies
preference strategies to those candidates which pass the constraints. Each strategy has an individual
weight, and may vote with less than its full weight for less-preferred candidates. The votes of all strategies
are summed, and the candidates with a score within a specified threshold of the highest score are
considered to be the desired (though possibly still ambiguous) referents,

MARS

Strategy

Parser
Applier

Interface Parser
$
Pool .
Resolution Determiner

Figure 4-1: MARS Architecture

MARS implements three constraint strategies and four preference strategies (one of which applies o NPs
only), each with an individual weight and rate of decay. The base weights and linear decay as the distance
between anaphor and candidate referent increases are manually selected before use; their valves remain
fixed for the duration of a program nm.

The constraint strategics are
1. Local Anaphora Constraints
‘Whenever an anaphor carries a coustraint such as gender, number, case, etc., the referent must
satisfy those constraints. MARS implements gender, number, and animacy; if not explicidy
present in the parse, these values may be inherited from the knowledge base.

2. Case-role Semantic Constraints

The constraints imposed on an anaphor filling a particular case role must also be satisfied by
the anaphor’s referent.

3. Precondition/Postcondition Constraints
Any action which changes the state of the world carries with it certain preconditions and

23

ST
i

ndidates

3

Constraints

multiple
candidates

single
candidate

Preferences

|
J

TR
il

=

)

d
l

Figure 4-2: Resolution Process in MARS

postconditions. The postcondition of the action which a candidate referent is a part of may
not violate the preconditions of the action containing the anaphor; such a violation indicates
that the anapbor and candidate cannot be coreferential.

The preference strategies used by MARS are:
1. Noun Phrase Case Agreement
The antecedent of a definite noun phrase tends to contain many of the same fillers for its
various attributes and cases. MARS models this effect by giving the highest preference to the
antecedent which has the greatest commonality with the definite NP; this is implemented by
scanning all the common slots and counting the number of fillers which match.

2. Case-role Persistence
Due to a form of "linguistic inertia”, the referent of an anaphor is more likely to have filled a

24

case role equivalent to the one filled by the anaphor. MARS mazintains separate weights for
strong case-role persistence (where the underlying actions of the sentences containing the
anapbor and candidate are the same) and weak case-role persistence (where the actions
differ). Case-role Persistence differs from Noun Phrase Case Agreement because the
matching criterion is the slot filled by the anaphor rather than the slot fillers within the
anaphor; as a result, the former prefers candidates which were used similarly while the latter
prefers candidates whose meanings are similar to the anaphor’s.

3. Syntactic Topicalization
Topicalized structures are more likely to contain antecedents for an anapbor than the
remainder of the utterance containing such a structure.

4. Intersentential Recency
In general, most anaphors are lexically close to their referents; thus, the likelibood that a
candidate is the proper referent for an anaphor decreases as the distance between them
increases.

MARS can be extended simply by adding another strategy to the list of strategies to apply. Assuming
that the new strategy is independent of the existing strategies, no other changes are needed.

In addition to disambiguating pronouns and anaphoric definite noun phrases, the MARS system has a
limited ability to disambiguate between multiple readings of a sentence. MARS can be placed in a special
"batch” mode in which it delays output of a processed sentence until a pre-specified number of the
following sentences have been processed. If a resolved anaphor is incompatible with any of the multiple
readings of a sentence, those readings are eliminated before the sentence is output, thus providing
additional disambiguation.

4.2, Lucy anaphora resolver

Another multi-strategy anaphora resolver was implemented as part of the Lucy natural-language analysis
system at MOC® in Austin, Texas. The Lucy anaphora resolver takes an opposed approach to selecting
candidate referents. Instead of collecting all possible candidates and removing unwanted ones, it allows
strategies (o generate new candidates for testing, stopping when a candidate’s score exceeds a prespecified
threshold.

Each strategy in the Lucy anaphora resolver consists of four components: a Modeler, a Constraint Poster,
a Proposer, and an Evaluator [38]. The Modeler maintains a local model of the discourse, while the
Constraint Poster determines constraints on the interactions between parts of a sentence. The Proposer
outputs a list of candidate structures and their associated scores for a specified anaphoric reference; some
strategies never propose candidates. Finally, the Evaluator returns a score (or an indication that it has no
opinion) given an anaphoric reference and a previously proposed candidate antecedent.

The score for a strategy/anaphor/candidate combination counsists of a pair (score,confidence). The score
is a value in the range -5 to +5, while the confidence is a value in the range 0 (no confidence) to 1 (perfect

SMicroelectronics and Computer Technology Corporation

25

certainty). The central strategy handler forms a composite score from the individual scores returned by
each strategy.

The knowledge sources which the Lucy anaphora resolver implements are:

1 Reeency‘
Candidates which are near the anaphor are to be preferred over more distant candidates. This
corresponds to MARS’s Intersentential Recency preference.

2. Syntactic Number Agreement
The number (singular, plural, indefinite, etc) of the candidate referent must be compatible
with the number of the anaphor.

3. Syntactic Gender Agreement
Similarly, the genders of the candidate and the anaphor as derived from syntax must be
compatible.

4. Knowledge Base Gender Agreement
For those candidates or anaphors which do not have explicit syntactic gender information,
default information from the kmowledge base is used instead. Again, the genders of the
candidate and the anaphor must be compatible.

5. Animacy
Since an animate anaphor should not have an inanimate referent or vice versa, the fifth
strategy states that the animacy of the candidate should be compatible with the animacy of the
anaphor. This and the previous three strategies correspond to the Local Anaphora Constraint
in MARS.

6. Type
Personal pronouns should not refer to eveats or propositions.

7. I-Within-I
As stated by GB Theory, an anaphor should not coindex with a structure that contains the
anaphor itself,

8. Disjoint Reference
Both reflexive and nonreflexive pronouns have additional (though differing) structure-based
restrictions on coreference. For example, a nonreflexive pronoun should not corefer with any
of the other arguments of the verb.

9. Semantic Type Consistency
The semantic interpeetation of the rest of the sentence may impose additional constraints on
the type of the anaphor.

10. Knowledge Base Consistency
Similar to Semantic Type Consistency, this strategy does not simply apply static type
constraints. Instead, semantic knowledge of context dependent phenomena is used to reason
about the candidates.

11. Cataphora
Certain syntactic constructions permit a pronoun to precede the full noun phrase to which it
refers; this strategy proposes such noun phrases as candidates when it eacounters one of those
constructions.

12. Logical Accessibility
Using discourse representation theory {28, 29), it is possible to rule out candidates because of
their inaccessibility due to embedding within quantifiers, negations, or other such logical
structures.

“The pames of these strategies have been taken from {32).

26

13. Global Focus
When the anaphor is #, this strategy proposes candidates which are salient throughout a
discourse, i.e. in global focus.

14. Local Focus
Those candidates which are locally in focus or centered should be preferred to those which
are not in focus.

15. Backward Center
Using the local focus stack of the previous strategy, one object may be predicted as the next
concept to occur in the text, and should be preferred.

16. Duplicates
This heuristic suggests that all occurrences of they within a given sentence corefer; similarly
for iz. In constrast, one is assumed not to corefer with any other instance of one within the
same sentence.

The Lucy anaphora resolver does not treat demonstratives and had not yet been tested on wem as of early
1991 {31]. Its support for demonstratives is limited to a demonstration of a possibie method for
implementing Webber’s ideas on discourse deixis (see Section 4.7).

4.3. SPAR

David Carter’s Shallow Processing Anaphor Resolver [12, 13] was designed to determine the referents of
anaphors in simple short stories. It is based on the premise that natural language can be processed using
limited world knowledge by maximizing the use of linguistic cues and the redundancy of language. In this
respect, it parallels MARS, MASTER-D, and the Lucy anaphora resolver.

Like MARS, SPAR also uses an existing parser and an existing generator, converting the output of the
parser 1o a format better-suited to its internal processing.

Anaphora resolution is embedded in the overall processing strategy, which also selects the proper reading
of the input from among those proposed by the parser. The readings are scored based on a computed
intrinsic semantic density, the ease with which anaphors can be resolved, and how many potential anaphors
are unresolvable. "Ease of resolution" is approximated by subtracting points from the score for each
rejected anaphor resolution rule. The reading with the highest score is the one which is accepted as the
correct reading.

SPAR applies a number of strategies to determine the proper binding for an anapbor. Its main strategies
are extended versions of Wilks' Preference Semantics [46, 47} and Sidoer’s anaphor resolution rules
{42,43]. When these approaches fail to produce a unique referent, SPAR also uses a Common Sense
Inference mechanism; if even that is insufficient, it applies a number of “collective” preference criteria.

For full noun phrases, SPAR’s rules closely follow Sidner’s FONP (full definite noun phrase) rules; the
major differences lie in the nonimplementation of computed specification and in inferred specification.
Inferred specification is performed by relaxing the information constraint to avoid common sense inference
whenever possible, This relaxation is often equivalent to making the assumptions necessary for
determining coreference.

27

SPAR’s rules for resolving definite pronouns are nearly identical to Sidner’s Pronoun Interpretation rules
with the major exception of intrasentential candidate antecedents. SPAR also addresses some ambiguity in
Sidner’s rules when dealing with plural definite pronouns by stipulating that the members of a group must
share a head primiiive.

The Common Sense Inference mechanism in SPAR applies inference rules in an attempt to build
inference chains. This process consists of the two basic operations of recursively making inferences from
story assertions involving either undetermined anapbors or candidate antecedents, and attempting to find
pairs of inferences forming chains linking assertions of the two different types. The successful chains thus
bind one or more anaphors to candidate antecedents.

Carter gives the outline of the overall processing strategy used by SPAR (in which anaphora resolution is
an integral part) shown in Figure 4-3. The tie-breaking beuristics in the last step operate on the original
dependency structures. The first assumes that the dictionary is ordered such that the most common word
senses appear first, such that it can select the dependency structure which selects the more common sense.
The second examines the attachment point of a case, preferring verb phrase attachment over noun phrase
attachment and low attachment over high attachment.

4.4. KBMT-89 Augmentor

The Augmentor component of the KBMT-89 machine translation system provides not only the user
interface for the entire translation system, but also an interactive disambiguator when automatic
disambiguation of the input is unsuccessful.

The overall architecture of the Augmentor component, and its relationship to other components of the
KBMT-89 system, is shown in Figure 4-4. The user interface accepts a sentence from the user and passes it
to the source language parser. The resultant parse is then passed through the format converter to produce
an internal representation which is processed by the automatic augmentation and disambiguation portions
of the Augmentor. Any remaining ambiguities are then processed by the interactive disambiguator with the
user’s belp. The final result of disambiguation is then verified by the user (which involves generating a
paraphrase in the source language) and then passed to the target language generator.

The interactive disambiguator first determines the points on which the remaining candidate readings
differ. It then displays up to four menus at a time (see Figure 4-5) to allow the user to decide which of the
cases at a point of difference is the correct one. Since four menus are displayed and the user may complete
an arbitrary one of those menus, he may choose the menu which appears to be clearest or most likely to
provide good disambiguation. In case the user is unsure exactly which item in a menu is the appropriate
one, the augmentor permits multiple items to be selected.

After the user completes one of the menus, the disambiguator removes all candidate readings which do
not cnntain one of the selected items at the point corresponding to the menu. The list of difference points is
updatad, and a new set of menus is displayed if there are still multiple candidate readings remaining.

Clear the Text Meaning and focus registers.

For each sentence of a text:

>
>

>

>>

>
>>
>>
>>
>>
>>

>

>

>
>

>>
>>
>>

vVVvyVvyy

Derive one or more current fragments from each of the
sentence’s dependency structures.

FPor each reading represented by a current fragment:
Set the reading’s initial score to its semantic density

Apply the anaphora resolution rules (using only
linguistic knowledge) to each potential anaphor,
subtracting points from the score for rejected
suggestions from the resolution rules and potential
anaphors for which there were no acceptable suggested
candidates.

Apply configurational constraints.
Accept only the highest-scoring reading(s}.

If multiple readings, or a single reading with multiple
candidate anaphor referents, remain, them for each reading:

Invoke the Common Sense Inference mechanism and adjust
the score based on the number of inference chains
complated.

Invoke "collective® preference criteria if necessary.

Accept the highest-scoring reading, or apply weak heuristics
to select the desired reading in case of a score. Merge this
reading into the context on the basis of the anaphora
resolution results.

Figure 4-3: Outine of SPAR Processing Strategy

29

Source Language
ONTOS P
Sl Format
Conversion
Setup Ontology l
Automatic
Help Augmentation
User Automatic
|intertace] A . Disambiguation
Interactive
Disambiguation
Verification
Target Language Source Language
Generator Generator
et Data —ee Control + Data
Figure 4-4: KBMT-89 Augmentor Architecture
4.5, Capture

A system which does treat demcnstratives, if in a limited manner, is Alshawi’s Capture [1]. Capture is a
natoral-language interface for data entry into a database; it understands various types of reference o the
preceding text. Demonstrative bandling in Capture is limited to "textual references”, which form a subset
of what was referred to in Section 2.2 as object references. Entities in the scope of a deixis context factor
have their activation levels increased if they were mentioned sufficiently recently and frequently; implicitly
referenced objects are not handled by the version of Capture described in [1].

Capture uses a marker-passing approach to activating the memory entities it generates during processing.
Like MASTER-D, Capture gives its various context factors (such as recency, emphasis, deixis, subject
area, and association) differing weights, and applies a decay mechanism to reduce weight with increasing
distance between reference and candidate antecedent. Unlike MASTER-D, however, the weights are

nothi

nothing (1tem 1s abment)
ON-P3SITION

OMN-POSITION

Shaw sygnonyms
DONE --

%
vy

N4

Show synonyms
DONE--

CHANGE-LOCATION: to change the location o+

SPATIAL-EVENT; Events whose focuk is spatiel
orjentation

CHANGE-POSITION: to change the spatial orientation of

DISCRETE~ELECTRONIC-NOVE-LEVER: w.g.. fiip a power %
aditch

;entence 19: 7 period Set the Power switch on the system unit ta On period

HE

B TiTeoa
. jrelp for KBMT

Th=rsnn atggoomy vonourans ... FLlodos Corapoots nen s ko o

HSetup
RParaphrasing
HReset MARS
English -> Jpn

Tile Input
|Jrugaent Dir
Graphical ILT
Consult ONTOS
Evaluate Lisp

Quit *o Lisp

Figure 4-5: KBMT-89 Augmentor Screen

chosen by the implementor and adjusted by hand using trial and error. For the majority of the context
factors, the integer weights of all existing instances are halved each time a new instance of certain context
factors is created, and any instances with zero weights are then removed.

The context factors used by Capture are

1. Sentential Recency The activation factors for all entities referenced explicitly or implicitly
through an anaphor, or created while interpreting a sentence, are increased.

2. Paragraph Recency Similar to sentential recency, but includes all entities in the scope of
sentential recency for the sentences already processed in the current paragraph, and any
memory entities created during interpretation of the paragraph.

3. Be-clause Emphasis The agents of certain be-clauses become foregrounded.

4. Syntactic-Topic Emphasis The topics of passive sentences are foregrounded and thus have
their activation levels increased.

5. Processing History Memory entities which are involved in memory processing have their
context activation factors increased.

6. Textual Deixis All entities which have been mentioned recently and frequently enough in the
preceding text have their activations increased.

7. Subject Area This context factor increases the activation of memory entities which are
related to a particular subject.

31

8. Associations Memory entities closely associated with those currenty in focus become
activated.
9. Task-Specific Factors

4.6. Susan McRoy’s Word Sense Discriminator

Susan McRoy's unnamed word sense discriminator [33] is an example of a system using the multi-
strategy approach for something other than reference resolution. It uses numerous preference cues o tag
each word with the comrect sense from among those listed in its lexicon; for example, whether reach means
*achieve’ or ’extend an arm’. Rather than using a fixed precedence order in applying the rules, the
discriminator dynamically weighs all of the preference information on the basis of specificity.

The discriminator uses the following knowledge sources:
1. a lexicon of 10,000 unique roots making coarse sense distinctions
2. a concept hierarchy
3. collocational patterns
4. concept clusters (categorial, functional, and situational)

Word sense discrimination is distributed through much of the system rather than located eutirely in a
single distinct module. It begins with morphological analysis and lexical retrieval, which assigns general
senses. The result of morphological analysis is then passed through a preprocessing stage which tags words
with parts of speech, identifies collocations (for example, verb+particle pairs and compound noun pbrases)
based on a set of simple patterns, and identifies preferences indicated by activated concept clusters. The
final stage occurs in the semantic interpreter, which identifies and combines preferences contributed by a
variety of knowledge sources, including those

e associated with the head, argument, modifier, or their components
e arising from syutactic cues
@ associated with any two of head, argument, modifier, and relation; for example, expected
qualifiers for a particular head
» arising from reference resolution (not used as of [33])
It is this use of multiple knowledge sources that is of interest in this dissertation.

The semantic interpreter combines preference cues by summing the strength returned by each; the word
sense with the highest total is selected. Each preference cue is assigned a strength between -10 and +10
based on its type and how well its underlying expectations are satisfied. Many of these strengths must be
chosen experimentally; those with an inherent extent (such as conceptual categories) are assigned a strength
based on the specificity of the particular cue--the fewer elements are subsumed, the higher the score the cue
is given.

The strength value for a concept is based on the number of items in the knowledge base subsumed by the
concept, ranging from a low value (0 or 1) for very general concepts to +10 for the most specific concepts
subsuming only a single entity. Complex concepts created with AND, OR, and NOT, are assigned a

32

strength based on the number of knowledge base eatities subsumed by both, either, or neither subconcept.
Concept clusters are scored on the basis of the specificity of the cluster (or the most specific cluster if a
word sense belongs to multiple clusters).

For a preference cue of strength S, the usual combining action is to add either +S or -$ to the total score
for the appropriate word sense, depending on whether or not the cue is satisfied. An exception is made for
some concepts, however. Very general concepts provide strong information because entities which are not
members of the concept are usually grossly inappropriate; thus, the returned score is based oa the
specificity of the concept’s complement for a score of approximately S-10 (which is more negative than -S
in these cases). Very specific concepts, on the other hand, frequently overspecify a constraint. If the
preference can be satisfied after a slight relaxation, the system bases its score on the specificity of the
concept’s complement; otherwise, it returns -S on failure. For concepts which are intermediate in
specificity, the system always uses scores of +3 or -S.

4.7. Webber’s Referent,,

As alluded to earlier, Bonnie Webber has done work on references to discourse segments, including
demonstrative references [45). She proposes an evolving discourse model and references within that
model, termed references, to distinguish them from expressions with extralinguistic referents in "the
outside world". Each discourse segment has an associated referent | which has at least three properties: the
segment’s speech act, interpretation, and surface form. The first two of these fall into the category cf
Discourse Reference described in Section 2.2, while the last cormesponds to Lexical Reference.

Only the referents,, which are on the right frontier of the discourse segment heirarchy are available for
use by a demonstrative. The right frontier consists of those discourse segments which are still open and the
last segment to have been closed. While a referent, does not necessarily create a discourse eatity, once it
has been referenced it gains discourse entityhood and may subsequently be referred to by an anaphoric
pronoun.

4.8. PUNDIT

The PUNDIT system [16, 36] treats demonstratives the same as anaphoric pronouns and NPs, although
doing so is inadequate [17). Demonstratives, by their deictic nature, generally assume (and require) more
mutual knowledge than noun phrases with a definite article. Thus, one might say

The highway near my office is very noisy.
but not
That highway near my office is very noisy.

unless the listener is expected to know which highway the speaker has in mind. PUNDIT would allow both
sentences equally because of its lack of special treatment of demonstratives, [18)

33

Chapter §
The MASTER-D Architecture

MASTER-D consists of seven basic components: the user interface, the parser/generator interfaces, the
candidate determiner, the strategy applier, the resolution strategies proper, the reweighter, and the world
modeler (Figure 5-1). The user interface communicates with the user to receive input for parsing or for
belp in resolving a demonstrative, and to display the results of processing. The parser and generator
interfaces communicate with the parser and generator in order to receive a parse to process and to create the
target text after processing. The candidate determiner extracts candidate referents from each sentence
processed for use in resolving demonstratives in later sentences. The strategy applier directs the
application of the resolution strategies and tracks the scores for each candidate referent The resolution
strategies analyze the demonstrative/candidate pairs in various ways and return a score indicating the
probability of the candidate being the actual referent of the demonstrative. The reweighter attempts to
optimize the strategy weights to maximize the accuracy of the resolutions. Finally, the world modeler
tracks relations between entities in the world and in the discourse.

The remaining parts of this chapter will cover the user interface, parser/generator interfaces, the candidate
determiner, the strategy applier, and the world modeler in more detail. The resolution strategies are
detailed in the next chapter, while the reweighter is discussed in Chapter 7.

5.1. User Interface

MASTER-D provides a character-based menu-driven interface w the user. This user interface provides
all the necessary menus and tools for specifying the initial input, answering any queries posed by the
system in selecting the proper referent for a demonstrative, etc. It has been written so that any of 2 manber
of underlying interfaces such as a character-mode terminal or an X-windows display may be used and
selected among at nm-time, At this time, only the character-mode interface is implemented; the X-
windows interface consists solely of stubs.

The major screen elements provided by the user interface are output windows, single- and multiple-
selection menus, popup prompts and dialogs, and a status line. Figure 5-3 shows the screen display during
a test run. MASTER-D has just popped up a verification dialog window, is showing three debugging
windows (strategy weights, current agenda item, and top candidates), and has set the staws line to indicate
that it is updating various of its data structures following the resolution.

MASTER-D
Strategy
Applier P
Reweighter
User
i
Candidate Candidate
Interface Pool
R . Determiner
esolution
World

Modeler

Figure 5-1: MASTER-D Architecture

Multiple-selection menus such as shown in Figure 5-4 are used when more than one answer may be
correct or it is acceptable for the user to specify multiple items if she is unsure of which item is the
appropriate one. For the example menu shown, MASTER-D will accept all candidates of any of the types
selected by the user, and reject as invalid candidates of the types not selected.

5.2. Parser and Generator Interfaces

The MASTER-D system uses a prepared parse as input and generates a processed parse as output
Therefore, it relies nn a separate parser and generator to provide full text-to-text processing, and thus must
interface with them. The parser and generator interfaces are built on top of Unix sockets, with a server loop
nmuing in the parser and generator to which MASTER-D directs requests (see Figure 5-5).

The socket interface code packages up the requests and sends them to the appropriate socket for the

35

MASTER-D

User Interface

TERMCAP X-Windows Other

Figure 5-2: User Interface Architecture

Verification
MASTER-D has selected
<<<nothing>>>
as the referent for the demonstrative
Demonstrative <this documents>
in the sentence
The comment is made in this document ’‘Against UI Copyright-:
Is this correct?
==> Yes / No [Yes]

— —
fF=—==Resolution Strategy Weights Agenda Item
100.0 100% Local Constraints
100.0 100% Case-Role Constraints . . .« . . <no agenda executing> .

0.0 100% Accessible Referents
100.0 100% Reference Type
100.0 100% World-Model Constraintsf==—====——m=Top Can-idates
100.0 100% Proximity
100.0 100% Recency .+ + . . . <no candidates> . . .
100.0 100% Case-Role Persistence
100.0 100% Salience

Updating internal data...

Figure 5-3: MASTER-D Screen Display

parser or generator, then reads the results and retumns them to the caller. In both directions, Lisp data is
printed out as ASCII for transmission over the network, and then read back into the Lisp system using
(read) by the receiver.

36

Reference Type of Demonstrative
<this>
1. Object
2. Property
3. Event
4. Action
5. Time
6. Location
-> 7. Logical Predicate/Proposition j=——===—=—===pgenda Item
-> 8. Discourse Reference nc STRATEGY-APPLIER
-> 9. Lexical Reference iority 25.00
A. Extralinguistic g {EVALREC-6 ROLE60 DISCOURSES8}
B. Cataphoric Reference
C. Non-Literal Reference = Top Candidates
D. Quantifier/Selector 25.00 DiscRef <Copyright on a user
E. Placeholder : 0.00 SPEAKER Frank Ingari
F. Comparison 0.00 *O-COMMENT
G. Epithet 0.00 *this document*
H. None of the Above 0.00 *The comment is made in this
Choose items, press Enter when done
e —————

Processing "This would mean that each typewriter manufacturer would be forced t

Figure 5-4: A Multiple-Selection Menu

The socket servers in the parser and generator each provide three main functions that MASTER-D uses:
"PARSE" or "GENERATE" to provide the actual input or output, "GC" to force a garbage collect while the
parser or generator is otherwise idle, and "BYE" to terminate the connection. The "PARSE" command
sends a string as its argument and returns the resulting parse. The "GENERATE" command sends a
processed parse as its argument and returns the resulting text.

Further details on the socket interface are given in Section 8.6.2 in the "Implementation Details” chapter.

5.3. Collecting Candidate Referents

After each utterance is processed, it is examined for candidate referents, which are then placed in the pool
of candidates for use by subsequent utterances. Since demonstratives may refer to a situation or implicit set
as well as explicitly named objects, the candidate extractor must do more than simply selecting nouns and
pronouns as was done in MARS. Among the more complex candidates are the surface form of the
discourse segments (for references such as that last sentence), various aspects of the discourse segments
such as the speech act or the time of events in the discourse, and sets implicitly formed by the items
mentioned in the text.” Further, the recovery strategies (see Section 6.3 beginning on page 44) may place

"The following example provided by Deborah Dahl illusteates such set formation:
“This recipe calls for coriander, hoisin sauce, and sesame oil. These can all be found at your local Chinese grocery store.”
These refers 1o the set of coriander, hoisin sauce, and sesame oil.

37

MASTER-D
Socket Interface
network network
Socket Socket
Server Server

PARSER GENERATOR

Figure 5-5: Parser and Generator Interface Architecture

additional candidates in the pool, such as candidates which are metonymically related to one which is
already in the pool.

The current implementation does not deal with multiple antecedents to a single reference (implicit sets),
but could readily be altered to do so (see Section 8.3 for implementation details). Since the candidates for a
demonstrative are drawn from the candidate pool rather than generated as needed, the addition of multiple-
* antecedent candidates 1o the pool would affect only the code implementing those strategies which examine
the structure of a candidate. Many multiple-antecedent candidates could be built from the simple
antecedents in the candidate pool, which would slow down the system unnecessarily in most cases.
Therefore, the best place to add the complex candidates would be in a recovery strategy which is invoked
when a resolution fails to find any compatible referents. This arrangement permits the system to operate
without the overhead of the additional candidates unless they are actually required.

Most candidates are eventually removed from the pool once the distance between the candidate and
utterance is sufficiently large. There are, however, a number of candidates which are globally available and
are thus never removed from the pool, such as the time and place of the utterance. The limit on the distance
can be influenced by discourse analysis--once a discourse segment is closed, it becomes less likely that the
candidates in that segment will be referenced again. The threshold appears to be much larger for

demonstratives than for anaphoric pronouns, as references spanning twenty or more sentences are

surprisingly common.

38

Maintaining a candidate pool is conceptually the inverse of the method used by Lucy, where candidates
are produced during the attempted resolution of an anaphor. While on-the-fly candidate generation is
potentially more efficient because fewer candidates must be checked, it does make the implicit assumption
that resolution can stop as soon as a candidate’s score exceeds a predetermined threshold. The candidate
pool does not make that assumption (one of the tests performed on MASTER-D is whether that assumption
holds); however, in the interests of efficiency, very old candidates are eliminated. That assumption of a
limited range for references may be bypassed by setting the age at which candidates are removed to an
extremely large value, larger than the size of the text to be processed. The age used by the curent
implementation is a count of the number of seatences prior to the current seatence plus a small multiple of
the number of intervening paragraphs (to account for the segmentation of the text due to paragraph
boundaries).

5.4. Strategy Applier

The strategy applier directs the application of the resolution strategies and maintains the total scores for
each candidate, selecting the highest-ranked candidate at the end of the resolution phase.

The strategy applier starts by creating an evaluation record for each candidate in the candidate pool and
placing that record on the resolution agenda. When all candidates have been placed on the agenda, the
agenda handier is called to execute resolutions until the agenda is empty. The agenda handler orders the
agenda items by the specified preference value, which is computed using any of the available functions
from which the user may select. At this time, the functions include ranking by current total score, by
number of strategies pending on the candidate, and by average score per resolution function executed.

For each item on the agenda, the agenda handler calls the associated function, which performs the actual
resolution strategy application. The user may select whether all strategies should be applied at once, or
whether the resolutions should be interleaved (the default). If the resolutions are interleaved, the
application function only calls a single resolution strategy and then places the evaluation record back on the
agenda

Once the agenda has nm to completion, the strategy applier determines the highest-ranked candidate as
well as those candidates within a pre-specified threshold of the highest ranking. If there is exactly one
candidate fitting this condition, it is returned as the referent of the demonstrative. If no candidates are
suitable, the strategy applier invokes recovery functions which attempt to expand the candidate pool. If, on
the other hand, multiple candidates fit within the threshold, the strategy applier invokes a different set of
recovery functions which attempt to remove all but one of those candidates.

39

Candidate Agenda
Pool
|
Créate
Evaluation Agenda ‘ Score
Records Handler Accumulator
when
done score
)
Select
Best Resolution
Candidate Strategy
none man
ons Y
Add New Narmrow
Candidates Field
¥__) ” /
DONE

Figure 5-6: Strategy Applier Architecture

5.5. World Modeling

Since demounstratives have an inherent notion of proximity or distance, an important knowledge source
will be the relative distances between the various objects in the discourse and the speaker, the listener, and
each other. By maintaining a world model of the relationships between entities mentioned in the discourse,
we may restrict the candidate space on the basis of distance and (for other languages) other factors such as
visibility. These discourse entities need not have physical existence, so this world model corresponds
roughly to Webber’s discourse model {45].

Once a world modeler exists to maintain distance relationships, it is fairly straightforward to extend it to
handle other relations. Given such a general world model, we may use those other relationships to further
restrict the candidate space by muling out candidates which would violate the assumed relations if
coreferential with the particular role of the action containing the demonstrative.

40

To support the world modeler, the knowledge base must contain descriptions of the changes in relations
between objects caused by each action, similar to the preconditions and postconditions used by MARS. An
inference module within the modeler will use those descriptions to determine the changes in the world
model caused by the utterances being processed.

Once again, the incremental nature of the multistrategy approach becomes useful. Since the world
modeler is nsed to restrict the candidate space. an incomplete set of action descriptions merely degrades its
performance, and does not completely invalidate it. For those entities for which the modeler either had no
information or could not keep the relations updated, it simply returns a marker indicating that the
information is not available. Any strategies using the modeler as a knowledge source can then retum a vote
which indicates either no preference or no confidence in the returned score. MARS used this metbod ip its
precondition/postoondition constraint strategy; when the knowledge base had no constraints for either the
anaphor or the candidate referent, the strategy returned a "no preference” value.

41

Chapter 6

The Resolution Sirategies

As has been stated previously, the strategies in MASTER-D are divided into four types in three classes:
constraints, preferences, and recovery. As shown in Figure 6-1, these classes of strategies are applied
sequentially until only a single candidate remains (i.e. if constraints rule out all but one candidate, no
preferences or recovery strategies are applied). As will be discussed in Section 6.4, this is a generalization
of the approach used by other multi-strategy resolution systems.

6.1. Constraint Strategies

The first class of strategies are the constraints, which may rule out candidate refereats. Since the
constraint strategies may be in error, bowever (i.e. if the utterance violates a constraint in making the
reference), we allow the possibility of resuming the evaluation of a candidate which is ruled out by a
constraint.

In some cases, a constraint strategy may determine that a particular candidate is not only acceptable, but
is in fact preferred over other candidates. In such cases, the constraint strategy may cast a positive vote for
the candidate, instead of a simple valid/invalid determination. For example, the Gender Constraint strategy
not only rules out candidates whose gender is incompatible with the demonstrative, it also returns a positive
score for (prefers) those candidates whose gender is an exact match; candidates which do not have the
identical gender value but are compatible are ruled to be valid but receive a score of zero (no preference).

¢ Local Constraints
Like anaphoric pronouns and definite NPs, demonstratives camry information such as number
(that vs. those) and gender (that man vs. that woman) which their referents must agree with. In
addition, the referent of a demonstrative NP must be a subclass or instance of the head noun of
the demonstrative (g red ball..that ball). Finally, demonstratives which are the subject of a
"be"-verb derive constraints from the object of the verb ("this is an excellent wine™).

o Case-role Constraints
As with anaphoric pronouns, any constraints imposed by the case role of the demonstrative
must be compatible with the constraints imposed on candidate antecedents.

® Accessible Referents
Not all segments of the prior discourse are accessible from the current utterance, so candidate
referents contained in such inaccessible segments need not be considered any further. This
strategy corresponds roughly to the Lucy discourse system’s Logical Accessibility strategy.
For example, any candidates in a closed discourse segment are generally inaccessible, such as
candidates in an interruption once the main conversation resumes.

¢ Reference Type
If the type of reference made by a demonstrative NP can be determined reliably without
actually resolving it, referents which are not of the same or another compatible type may be

42

Gender
Nurmber
olc.
Case-
Roles
Constraints
Access-
bikty
21 7 mitiple
candidate candidates
Preferences H
Recency
no candidates
or
multiple
candidates
.
Recovery
Ask
User

Figure 6-1: Applying Resolution Strategies in MASTER-D

muled out immediately. For instance, that time could refer to a time or an event but not a
location.
¢ World-Model Constraints

By keeping track of the relationships between objects in the world, as modified by the
propositions of the prior discourse, it may be possible to rule out candidates on the basis of
violating constraints on the objects in the model. This is a considerably more general analogue
to the precondition/postcondition constraints used by MARS, which were static assertions
stored in the knowledge base.

43

It should be noted at this point that the world-model coustraints may need to be demoted to a strong
preference, as other strategies occasionally override the invalidation on the basis of the world model. For
example, in

Although most stayed sealed, some of the envelopes opened
due to defective adhesive.
Those were carefully resealed.

world-model constraints are completely compatible with other strategies such as recency, while in

Although some of the envelopes opened due to defective
adhesive, most stayed sealed.
*Those were carefully resealed.

they conflict. Even though the world model indicates that the referent could not be the set of envelopes
evoked by “most stayed sealed”, that is in fact the referent which seems preferred, making this second
example anomalous.

6.2. Preference Strategies

The second class of strategies are the preferences. These are beuristics, and therefore do not absolutely
rule out any candidates. Since they vary in predictive power, each preference is given a separate weight
which indicates the maximum amount it may contribute to the overall score for a candidate (the weighting
is discussed in Chapter 7).

¢ Proximity

The referent of a demonstrative should have the same proximity value as the demonstrative.
Thus, "this car” should not be matched with a candidate which is considered to be remote from
the speaker’s point of view, such as a car which is several city blocks away. In languages
other than English, additional distinctions beyond "near” versus "far" may be inherent in the
demonstrative, and should also be taken into acoount. The world modeler described previously
maintains the relationships between objects in the discourse from which the proximity values
of candidates may be derived.

¢ Recency

References and their antecedents are generally near each other lexically; thus, the likelyhood of
a candidate being the referent of a demonstrative decreases as the distance between candidate
and demonstrative increases. An example of recency effects is seen in the "envelopes”
sentences above. This strategy corresponds to Iutersentential Recency in MARS. For
example, if everything else is equal, one would expect those in

c.e..keys....

....tools....

Those should be open.

to refer to tools rather than keys.

o Case-role Persistence
There is a pervasive form of linguistic inertia which manifests itself as a preference to maintain
the same case role for an object. Thus, a candidate should be given preference if it fills the
same role as the demonstrative, especially if the underlying action is the same. This strategy
corresponds to the Case-role Persistence Preference in MARS.

¢ Salience

Certain constructions (both syntactic and semantic) can make an object “stand out” and thus
make it more likely to be the antecedent of a later reference. A specific example is
topicalization, as described above for MARS; focus also plays an important role in making an
entity salient. This strategy is a superset of both the MARS Symtactic Topicalization
Preference and Lucy’s Local Focus strategy. An eatity which is in focus will also be more
salient and tbus more likely to be referenced multiple times; MASTER-D makes use of this
bebavior to declare a multiply-referenced entity to be in focus, i.e, in

44

While I am very much behind the Lotus position, I am
speaking tonight as an individual, not as an officer
of Lotus.

1 say that by choice.

I wasn’'t asked to say that.

having determined that the first that references the first sentence, both it and the thas become
coreferential and are therefore considered to be in focus. The second that will then be given a
positive salience score on the first sentence than on other sentences in the prior context.

6.3. Recovery Strategies

The third class of strategies are the recovery strategies, which are only applied when the constraints and
preferences fail to produce a single most-preferred referent. Different strategies are applied d=pending on

whether all candidates have been disqualified or multiple candidates remain.
© Metonyms
When the constraints rule out all candidates, we may expand the space of candidates by
considering metonymic references, e.g.
I called the IRS.
Those beaurocrats still haven’t processed your tax return.

¢ Relax Constraints
If there is a suspicion that one or more candidates were erroneously discarded, we may wish to
reconsider those candidates which had the greatest preference before a strategy ruled them out,
especially those which were almost able to pass the constraint. Goodman [20, 21] describes
how to use such constraint relaxation to recover from reference identification failures.

An example in which the usual gender constraints are violated is the German sentence (marked
for gender)

Der Kaiser™, das¥ ist <in weiser Mann¥®. [3]

The Emperor, that is a wise man.
In this example, the neuter das refers to the masculine NP der Kaiser.

¢ Ask the User
When multiple candidates remain, let the user complete the selection process through au
interactive dialogue. Similarly, if no candidates remain, ask the user to identify the referent in

the preceding text.

Constraint relaxation is not explicitly implemented in the current system, but the mechanism used to
apply the strategies provides some implicit constraint relaxation capability. Should all candidates be ruled
out by one constraint or another, all candidates which had previously been invalidated will be reactivated.
Resolution then continues until one or more candidates have been completely processed or all candidates

have been ruled out by a second constraint (in which case all candidates are again reactivated).

45

6.4. Resolution Strategy Invocation

All of the above strategies are called individually by a central controller, which applies the various
strategies to each candidate referent and maintains a running total of the scores returned by the strategies
(see Section 7). Constraints are applied first, followed by preferences for those candidates which were not
ruled out by the constraints. If there is not a unique referent remaining after those strategies, the recovery
strategies are invoked. Since several of these strategics are actually groups of strategies (such as salience,
which encompasses both local and global focns, among others), it may be more effective to treat each
substrategy of those strategies as an independent strategy with a separate weight, and invoke the
substrategies individually.

The three-step approach just outlined may be seen as a generalization of the approach used by MARS, the
explicit statement of the approach used by SPAR, and an analogue of the approach used by Lucy. MARS
used only the first two steps, not having an explicit concept of recovery strategies (although "ask the user”
was implemented as part of the KBMT-89 Augmentor into which MARS was incorporated). SPAR uses
all three classes of strategies, although it does not call its recovery strategy such explicitly. Recovery is
attempted by invoking a backup inference mechanism using weak, very general rules if the normal
mechanisms fail to bind all active anaphors. Lucy can be considered to interleave constraints and
preferences, while effectively making most of its strategies recovery strategies. Since Lucy starts with an
empty candidate space, every strategy which proposes new candidates is in effect recovering from an
unsuccessful resolution by expanding the candidate space.

6.5. Scope

Since there is a wide variety of types of demonstrative reference, and time was constrained, MAS ER-D
only attempts to resolve a subset of those types, as shown in Figure 6-2. The heading "Partially Supported™
in that figure shows those types of references for which MASTER-D contains only rudimentary support.
For example, metonymic demonstratives are limited to those relations which may be readily derived from
the knowledge base, such as "part for whole".

MASTER-D also restricts itself to the "near” vs. "far” distinction used by English, and does not attempt to
address the additional distinctions present in other languages. Such finer distinctions could be added at a
later time.

Supported Reference Types
Object
Property
Event
Action
Locative

Partially Supported Types
Logical
Temporal
Lexical
Discourse
Non-literal (metonyms only)

Unsupported Types
Extralinguistic
Quantifier/selector
Comparison
Cataphoric
Epithet
Placeholder

Figure 6-2: Type of Demoustrative References Supported by MASTER-D

47

Chapter 7
Adaptive Strategy Weighting

The main drawback of the multi-strategy approach is its sensitivity to the weighting of the strategies.
Once there are more than a few strategies, determining the optimum weighting by hand becomes infeasible.
To overcome this drawback, the MASTER-D system attempts to optimize the strategy weights
antomatically. Adaptive weighting is not a new idea; it dates back at least to Samuel’s checkers program

[39. 40}. However, it has not previously been used in conjunction with the maultistrategy approach to
reference resolution.

As currently implemented, MASTER-D assumes that the optimal weight for a strategy is the same
regardless of the type of demonstrative, i.e. pronouns and full noun phrases. The system could fairly
readily be modified to store multiple weights keyed to the type of demonstrative, but that would slow down
weight convergence by splitting the reweighting among multiple values. Since the available test set was
relatively small, this modification was not undertaken, but it could be performed in the future.

7.1. Strategy Weighting

Each strategy receives an individual weight which specifies the maximum effect the strategy may have on
the overall score for a candidate referent. A strategy may return a score between -1 and +1, inclusive, or
the symbol invalid. A score of zero means that the strategy had no opinion on the candidate, while
increasingly positive scores indicate that the strategy was increasingly confident that the candidate is the
correct referent, and increasingly negative scores indicate increasing confidence that the candidate is not
the comect referent. The value invalid indicates that the strategy considers the candidate to be
impossible due to constraint violations. The central strategy applier performs the actual strategy weighting
by multiplying the returned raw score by the strategy's current weight before adding it to the total score
(thus yielding a strategy score in the range -W to +W, inclusive, for a strategy of weight W), This
separation of the strategy weight and the strategy’s raw scoring simplifies other portions of the system,
such as the reweighting mechanism,

MASTER-D makes a further separation of the raw score into the strategy’s basic confidence based on the
context, and the amount that the confidence is attenuated by the distance between demonstrative and
candidate antecedent; this is done for additional flexibility. In the current implementation, the attenuation
factor is fixed at load-time by specifying an attentuation function and speed factor in the strategy’s
definition; future versions may permit the reweighting mechanism to adjust either or both in attempting to

48

optimize the system’s performance. Since the strategy applier immediately applies the attenuation function
to the base score returned by the resolution strategy, this separation is essentially transparent (o the
remainder of the system, and resolution strategies can be coasidered to return a single confidence score
which depends on both the context and the distance between demonstrative and antecedent.

One case where this separation is of particular import is the Recency Preference strategy. To all external
appearances, this strategy returns a confidence score which decreases as the number of parses intervening
between the demonstrative and candidate increases. In actuality, the scoring function for this preference
uniformly returns 1.0 (maximum preference) in all cases, and it is the decay function which actually
produces the decreasing scores. In a version of the system where the reweighting method affects the decay
functions as well as the strategy weights, this allows the reweighter to adjust the effective range of the
Recency Preference strategy. For the tests described in Chapter 10, the decay speed was set to 0.25, which
limits the range of recency effects to the previous eight parses (any candidate prior to that point receive a
maximum negative preference). Should this prove to be too small, changing the decay function or reducing
the decay speed would increase the effective range.

The central controller which applies the strategies converts a score of invalid into a highly negative
score. This prevents further consideration of the candidate as long as there are candidates which have not
been deciared invalid by one or more strategies (see Section 7.2). Should all other candidates be deemed
invalid, processing will continue; another score of invalid will again temporarily remove the candidate
from consideration.

The weighting system described above is quite similar to that used by the MARS anaphor resolver except
for the splitting of the raw score into a basic confidence and antenuation factor. In MARS, each strategy is
given a weight which indicates the maximum positive contribution toward the overall score. Negative
contributions are not limited, however, allowing a strategy which is the equivalent of a Lucy discourse
system "fading infinite set generator” (such as recency) to return arbitrarily negative scores. A MARS
strategy can also return invalid if it determines that a candidate violates one or more counstraints. In
MARS, a single strategy score of invalid converts the overall score to invalid, preventing any further
consideration of the candidate.

The Lucy discourse system strategies return a pair consisting of a score and a confidence factor.
Although arbitrary combinations of score and confidence are possible, the Lucy system only uses a small
set of weighting patterns. For example, "finite set generators” and "fading infinite set generators™ as
described in [32] use a fixed value for the confidence score, while filters use only two (score,confidence)
pairs such that the contribution of the strategy is either zero or highly negative. All three of these patterns
may be created by a single numeric score such as MASTER-D uses, and in fact a suitable combination
function could create a single score from the (score,confidence) pair in the patterns used by Lucy.

Even though returning a pair (score,confidence) is more general than a simple score, and may be slightly
more accurate, a simple score lends itself more readily to automatic reweighting (see Section 7.3). As
detailed above, a single pumber can produce most of the weighting patterns which are actally used in
Lucy, so the loss of generality is much less than it might appear at first glance.

49

7.2. Strategy Ordering

Becausc the system will potentially examine all of the candidates for the preceding cootext, a method for
ordering the candidates is highly desirable. The obvious ordering strategem is 10 order the agenda by the
current total score of each candidate. The primary purpose of ordering is to defer further processing of
candidates which have been declared invalid, since all strategies will be applied to each candidate which is
oot declared invalid. When the score invalid is converted into a highly pegative value, ordering by
current total score achieves the desired result In addition, those candidates which bave already been
declared the preferred antecedent by one strategy will be processed first.

Two alternate processing orders are also available as options in MASTER-D. Processing by current
weight tends to apply all strategies to a candidate at once, since an early positive score makes the candidate
the highesi-weighted among the incompletely processed candidates, where it usually remains until all
strategies have been applied. Therefore, the user may also select to process candidates in order by
remaining strategies or by average score per strategy applied. The former guarantees strict interleaving,
since the second strategy will not be applied until all candidates have had the first strategy applied. The
Iatter preserves the concept of processing the most-preferred candidates first while having much less of a
tendency to apply all strategies to a candidate at once. However, the exact sequence in which the resolution
strategies are applied to the various candidates is not of importance when all strategies are applied to all
candidates, as is the case when reweighting is in effect. Only when the resolution process is stopped early,
such as when a candidate reaches a particular threshold score, does the order of strategy application have an
effect; such an early completion is not possible when reweighting is active because a strategy must be
applied to all candidates to detemmine its accuracy. Whether it will be possible to stop the resolution
process when a candidate reaches a particular threshold without adversely affecting accuracy remains to be
determined.

7.3. Adaptive Reweighting

As mentioned at the beginning of this chapter, the greatest weakness of the multistrategy approach lies in
assigning weights to the individual strategies, which in prior systems has been done by hand. However, the
strategy weights can not be expected to be optimal initially, so a method for adjusting the weights
automatically is desirable. After each utterance, we wish o reduce the weight of strategies which voted
against the actual referent, and increase the weight of those which voted for it. As a result, the more
accurate strategies will become increasingly influential in the determination of the referent for a
demonstrative, while less reliable strategies will become less important.

MASTER-D provides a number of reweighting methods, from which the user selects one i the system’s
setwp. The currentdy implemented methods are setting the weight based on the overall accuracy of the
strategy, adjusting the weight by a fixed percentage after each resolution, and adjusting the weight by an
exponentially decreasing amount after each resolution.

Setting the weight based on the overall accuracy is conceptually the simplest method, but determining the

50

accuracy proves to be somewhat tricky, as will be discussed shortly. Once a strategy’s accuracy has been
computed, a simple linear function converts the accuracy into an actual weight. Initially, this function was

accuracy-50
50

yielding weights from -initial weight to +initial_weight and a score of O for a 50-percent
accurate strategy. This produced undesirable results, so the function was later modified to

accuracy-20
80

which yields weights from —0.25x initial_accuracy 10 +initial_accuracy and a score of 0 for
a 20-percent accurate strategy.

X initial_weight

X initial_weight

Adjusting the weight by a fixed percentage simply means changing the current weight based on bow the
strategy voted on the current resolution. If the strategy voted for the desired referent, its weight is
increased; if it voted against, the weight is decreased; and if it offered no opinion, the weight remains
unchanged. The change is five percent of the current weight by default, but the size of the change may be
modified in the system configuration.

Incrementally adjusting the weight functions the same as fixed-percentage reweighting, except that the
amount of the change is precomputed and does not depend on the strategies current weight. The amount by
which strategy weights will be changed is the smaller of the initial change (30 by default) and

initial_change/———-——'z:;yw}o::;:
where decay_factox controls how quickly the amount of change decreases, and is 10 by default (thus,
the first ten resolutions use the initial change, and the change is reduced to half the initial amount by the
twentieth resolution).

in order to simplify the testing of other aspects of the system, the scores are rescaled (nonmalized) after
every reweighting to keep the sum of the weights constant. For example, if there are eight strategies and
each begins with an initial weight of 100, a candidate receiving full preference from all eight strategies will
always receive a score of 800 (ignoring rounding errors), no matter how the strategies have been
reweighted. This rescaling permits checks for thresholds at which candidates may be accepted or rejected
automatically without further processing.

Assigning an accuracy 0 each strategy proves to be less than straightforward. Because of the large
number of candidates which are p-ocessed during a resolution, it is not feasible to simply look at the
candidate which proved to be the actual referent. Doing so tends to yield either an excessively low
accuracy or an excessivly high accuracy. If the strategy is considered to bave voted correctly only if it gave
the highest score to the correct candidate, the accuracy will be underestimated whenever a strategy givss
multiple candidates high scores and when the correct candidate received the second- or third-highest score.
Conversely, if the strategy is considered to have voted correctly as long as it did not vote against the correct
candidate, most strategies will typically receive high accuracy ratings even if they pick scores at random.
Taking all incorrect candidates into account produces similar difficulties in rating accuracy. Because of

51

these problems, the MASTER-D system provides multiple user-selectable accuracy functions, which are
described in Section 8.2,

Another potential problem is skewing of the results by correlated strategies. If two or more strategies’
scores are correlated (even if the strategies are otherwise entirely independent), then it is possible for the
correlated strategies to vote incorrectly but override the comrect votes of other strategies. In an
unsupervised environment, these incorrect votes would then erroneously be considered correct, affecting
the reweighting of all strategies. The current implementation of MASTER-D avoids this problem by
always asking the user for verification that the resolution was correct whenever adaptive reweighting is
enabled. The system can thus properly identify correct and incorrect votes even when the imcorrect votes
outweigh the correct votes.

52

53

Chapter 8
Implementation Details

This chapter provides details on the actual implementation used for a number of the components in the
MASTER-D system. The first two componeats discussed are the core of the MASTER-D system: the
strategy applier and strategy reweighter. The remaining sections of the chapter cover the implementation
of components which are in a sense peripheral to the system, but nonetheless important. These componeats
are the candidate determiner, the world modeler, the definition of new strategies, and the Unix interfaces t0
the display and to other processes in which the parser and generator are running.

The MASTER-D system consists of approximately 16,200 lines of Lisp code, plus a knowledge base
which may be as large as required to represent the domain model and world modeler’s inference data. The
knowledge base currently contains 524 entries (frames) in a file which is 2338 lines in length.

8.1. Strategy Applier

The strategy applier is the beart of the system. It performs the actal invocation of the resolution
strategies, the ordering thereof, the tallying of the scores for each candidate, and the selection of the
highest-ranked candidate(s). The reader may wish to refer to the source code in Section B.1, beginning on
page 123, while reading this section.

The agenda handler used by the strategy applier exports the following functions of importance to this
discussion: queue-agenda-item and run-entire-agenda. The former places a pew item on the
agenda with the specified priority, while the latter repeatedly executes the first item on the agenda until the
agenda contains no more items. An agenda item is a triple consisting of a priority value (nsed for ordering
items on insertion), a function, and a list of arguments to pass to the function. The agenda handler invokes
an agenda item by calling the function with the specified arguments; on return, the agenda item is discarded
unless the function returns one of the special values :quit or :requeue. If the function returned
:quit, all remaining items are removed from the agenda, effectively terminating execution. If the
function retumed : requeue or a list whose first element is : requeue, then the current item is placed
back on the agenda either with its original priority value or with the priority specified by the second
element of the retumed list.

The strategy applier is indirectly invoked by resolve-demonstrative. This function creates a
resolution record for the specified demonstrative and candidate referents, then creates one evaluation record

54

for each candidate referent. As each evaluation record is created, it is added to the agenda as an argument
to the function strategy-applier. When all candidates have been preprocessed in this manner,
run-entire-agenda is called to invoke the strategy applier on all candidates for the current
demonstrative. Once run-entire-agenda returns, all candidates have been evaluated, and the
resolution record created as the first step of resolve-demonstrative is examined to determine the
candidates considered best by the resolution strategies. If exactly one candidate remains, no further action
is necessary; if no candidates remain, initiate-recovery0 is invoked to attempt an expansion of the
candidate space; finally, if multiple candidates remain, initiate-recovery2 is invoked to
disambiguate among the remaining candidates. After performing recovery actions, if necessary,
resolve-demonstrative performs a variety of bousekeeping, including invoking the strategy
reweighter,

Function strategy-applier is designed such that it can be interrupted after each resolution strategy,
permitting the processing of the candidates to be interleaved rather than completely processing one
candidate before proceeding to the next. This interruption is made possible by using the :requeue
feature of the agenda handler and storing a list of uncalled strategies in the evaluation record. It is actually
implemented by baving strategy-applier return with the :requeue flag; when it is subsequently
re-invoked, it continues by processing the next strategy from the list of uncalled strategies.

8.2. Reweighting

The reweighter attempts to optimize the strategy weights by adjusting them after each resolution based on
the outcome of that resolution. The reader may wish to refer to the source code in Section B.2, beginning
on page 136, while reading this section.

The main function of the reweighter is strategy-reweighter, which is called with a completed
resolution. It calls reweight-strategy on each constraint and preference strategy, then
rescale-strategies to scale the resultant strategy weights such that the total weight remains
constant. After rescaling, strategy-reweighter performs various housckeeping, including removing
outdated voting information associated with each strategy.

The reweight-strategy function begins by determining the accuracy of the given resolution
strategy, then invokes the user-specified reweighting method. On return from the reweighting method, it
accumulates statistics on how the strategy’s weight has changed over the course of all resolutions.

As was mentioned earlier, determining the accuracy of a strategy is not as straightforward as it first
appears. The approach taken by the current implementation of MASTER-D (which could be improved) is
to allow the user to select one of five accuracy functions which compute the accuracy in slightly different
fashions. Each function awards a value between 0.0 and 1.0 points per demonstrative to each strategy
depending on how it scored the candidates, and the overall accuracy is computed by dividing the total
accuracy points by the number of demonstratives.

55

The first function looks at the absolute ranking of the correct referent among all candidates. It awards

correctness points for each resolution as follows:
© (.00 if the unweighted score of the comect referent is negative or invalid

» (.50 if all candidates received a score of zero

s 1/N if all N candidates received the same nonzero score

1.00 if the correct referent has the highest unweighted score

» 0.50 if the correct referent has the second-highest unweighted score
(.33 if the correct referent bas the third-highest unweighted score
(.25 if the correct referent has the fourth-highest unweighted score
¢ 0.00 otherwise

The rationale is to consider the strategy to have been “‘half-right’ if the two highest-scoring candidates
would have to be selected to include the correct one, *““one-third-right™ if the three highest are needed, etc.
The score of 0.50 in case of all zero scores handles the case of a strategy which does not provide an opinion
on any of the candidates and which therefore does not affect the outcome of the resolution one way or the
other.

The second accuracy function is the same as the first one with the exception to an adjustinent in ranking.
When multiple candidates receive the same unweighted score, the ranking is reduced by one, such thata
score of 1.0 would be ranked second-highest and a score of 0.7 would be ranked fourth-highest among 1.0,
10, 0.7, 0.7, 0.7, 0.7, and 0.6. Ranking by first occurrence in descending order proved to overstate the
accuracy of strategies which return many duplicate scores, while ranking by last occurrence greatly
understated their accuracy. Reducing the ranking by one is a compromise between those two alternatives,
but most likely 2 more effective method is possible.

The third accuracy function simply examines the value returned by the strategy for the comect candidate,
and assigns correctness points as follows:
¢+ (.00 if the correct referent’s unweighted score is negative or invalid
 0.50 if all candidates received the same score
¢ 1,00 if the correct referent has a positive score
« (.50 if the correct referent’s score is zero and no other candidate received a positive score
© (.00 otherwise

The final two accuracy functions examine the relative ranking of the correct referent. The relative rank is
computed by first deleting all duplicate scores and then determining the ranking within the remaining set of
duplicate scores. The fourth accuracy function uses the same rules for awarding correctness points as the
first strategy function, while the fifth function uses the same rules as the first except for the initial check for
anegative or invalid score.

56

8.3. Candidate Determiner

The candidate determiner is the primary means by which new candidates are added to the candidate pool.
Each candidate is represented by a FrameKit (35] frame, and the candidate pool is simply a list of the frame
names for the candidates. The frame representing a candidate may be the actual frame used in the
canonicalized parse, or it may be a frame especially constructed for the candidate pool by the candidate
determiner. The latter type generally include a reference to some frame in the canonicalized parse.

The current implementation of the candidate determiner finds and adds five types of candidates: noun,
lexical, discourse, logical proposition and predications, and property. To find the noun candidates, it
traverses the tree formed by the canonical parse, extracting those frames which are stored in a pre-specified
list of slots such as agent and instrument. Lexical candidates are found by traversing the tree a
second time and checking for the surface strings or root forms the parser indicated as producing a particular
portion of the parse. The discourse candidate is formed from the entire sentence; an enhancement would be
to use discourse analysis to form candidates from entire discourse scgmeats. Logical propositions and
predications are found by traversing the parse tree a third time, checking for frames whose is-a link
points at a subclass of the ontological frame *logical-proposition*. Finally, propesties are found
by traversing the parse tree yet again and checking for fillers of a set of slots known to represent properties.

For lexical and discourse candidates, the candidate determiner forms special frames which set the is-a
and Sobjtypes$ slots appropriately—-to *lexical-reference* and lexical-ref or
discourse-reference and discourse-ref, respectively. The lexical candidate also specifies
the surface form in the input slot, while the discourse candidate also specifies the appropriate portion of
the text through the discourse-referent siot.

Similarly, special frames are formed for logical and property candidates, which are is-a
proposition and *property*, respectively. A logical candidate’s frame points at the appropriate
portion of the original parse in its logical-prop slot A property candidate’s frame contains the
property slots which were found in the parse, a property-of slot pointing at the original frame, and a
property-type slot containing a list of all the property slots.

Section 5.3 mentioned the possibility of multiple-antecedent candidates. These could be made part of the
candidate pool by defining a new frame similar to those used for lexical and discourse candidates which
indicates that particular type of antecedent and contains references to all of the antecedents for the
candidate.

57

8.4. World Modeler

The simple world modeler used by MASTER-D acts on precondition and effect information stored in the
ontology. Whenever the preconditions of an action are satisfied, the world model is updated according to
the directives stored in the effect data.

The preconditions are processed one at a time until one is violated or all preconditions have been
processed. A precondition specifies a relationship which either must exist or must not exist® To permit
relationships with unspecified objects in the world model, a variable may be specified, which is then bound
to the object actually found. The bound variable may then be used in subsequent precondition statements
to indicate the object to which it bas been bound.

Should all preconditions be satisfied, the effect data is then processed one effect at a time. Each effect
statement may either bind a variable for subsequent use, assert or retract a relation, or add or delete an
object in the world model. Variables bound by the precondition statemeats may also be used in the effect
statements.

A portion of the ontology used by MASTER-D is listed in Appendix C.

8.5. Adding New Strategies

The system is designed so that strategies may easily be added. The module strategies.lisp (see
Appendix B.3 beginning on page 145) contains the declarations of the resolution strategies to be used as
well as the top-level functions for those strategies.

To add a new strategy once it has been implemented, it must merely be added to the appropriate list of
strategies: constraints, preferences, recovery by expansion, or recovery by restriction. The entry for the
new strategy specifies a user-readable name, the function to invoke, and a variety of optional information;
the structure containing these settings also includes fields used internally by MASTER-D for housekeeping
and statistics. Optional information which may be specified for the strategy includes

* a non-default initial weight

o the initial decay function and decay speed to adjust for the distance between demonstrative and
referent; these may be modified by some reweighting mechanisms

* 2 non-default distance function
* 3 function to be called before processing a demonstrative to prime the strategy

* a function to be called after the demonstrative has been resolved to update strategy-internal
data

¢ a list of the substrategies invoked by the strategy, for use by the strategy applier when it is told
t0 apply substrategies individually

SNobexistence is defined as in Prolog, i.e. the relation is not known to exist; it may in fact exist but be unknown due to
incompleteness of the world model.

58

{make~-strategy
:name "Accessible Referents”
:func faccessible-referents
:init-weight 0.0 ; current only returns 0 and invalid
:weight 0.0 ; must be same as init-weight
:priming-func ‘prime-accessibility
:update-func ‘update-accessibility
)

(defun accessible-referents (demonstrative candidate
&aux access score)
(setf access (or (global-candidate-p candidate)
{(referent-accessible~p demonstrative
candidate)
»)
(if access

(if (numberp access)
{setf score access)
;else
(setf score 0.0)
)

;else
(setf score ’invalid)
)

score

Figure 8-1: Sample Strategy Definition

From the point of view of the strategy applier, the new interface to the new strategy consists solely of the
strategy’s main function, its optional priming and updating functions, and the distance and decay functions.
For k2 strategy reweighter, the entire interface to the new strategy consists of the parameters and statistics
stored in the strategy’s data structure. Therefore a new strategy may be added without updating either the
strategy applier or strategy reweighter.

The MASTER-D system provides a number of functions designed to support the resolution strategies, but
a strategy can be entirely self-contained and never call other functions. Some of the support functions
available to a resolution strategy are

« onlology access: retrieve an item from the knowledge base, determine the class of an object or
reference, etc.

» world model access: determine what, if any, relations exist between two objects.
« object typing: determine the type of an item, i.e. Object, Action, Event, etc.

o substrategy applier: perform the default substrategy evaluation when strategies are treated
monolithically even though they contain substrategies.

An example strategy definition is show in Figure 8-1. This strategy implements the accessibility
constraint under the name "Accessible Referents”, with a strategy weight of zero (which disables automatic
reweighting for the strategy), using accessible-referents as its main function,

59

prime-accessibility as the function to prepare the strategy for a new sentence, and
update-accessibility as the function to process any changes after the sentence has been resolved.
The function accessible-referents in turn calls a function that examines the discourse model to
determine whether the specified candidate may be referenced by the demonstrative, and rewurns the
appropriate score depending on the result. The function is already prepared for a preference value to be
returned in addition to a simple yes/no response, but that has not yet been implemented. The current
implementation is merely a very rudimentary version of a focus stack [22], which relies on information
supplied by the parser to determine when to push and pop focus frames.

8.6. Low-Level Input/Output

Any program which performs input or output eventually must call one or more functions which actually
invoke the operating system or some other service provider to do the actal data transfer, unless the
program accesses the hardware directly. In MASTER-D, the user interface and parser/generator interfaces
perform two different kinds of /O, and thus two modules are required to allow them to perform the actual
/0. These two modules contain the low-level user-interface primitives for the display device being used
(currently only Unix "termcap” is supported) and for performing network communications using the Unix
socket system.

8.6.1. Unix TERMCAP Interface

The character-mode user interface is written in fairly portable Common Lisp (ounly four small functions
and a few constants are implementation-dependent). It uses the Unix “‘termcap’” system to determine the
control sequences required to effect the various primitive actions performed in placing or removing menus,
updating the status line, etc. To make use of this system, a special module interprets the ‘‘termcap’” entry
for the terminal being used and emits appropriate command sequences to effect the actions requested by the
MASTER-D user interface code.

The termcap module begins by extracting the values of the TERM and TERMCAP environment
variables. Under CMU Common Lisp, the program’s environment is available as the value of the
extensions::*environment-~list* variable; other Lisp implementations may require that the
environment be retrieved from a different variable or function, or that a function be written specifically for
this purpose. The TERM and TERMCAP variables are then used to retrieve the terminal capability entry
for the display being used; which is parsed to produce an association list of capability names and their
values.

The various output requests made by the user interface code eventually funnel down to two functions in
the termcap modules: putchar to display a character and tputs to send a tezminal control sequence.
The tputs function interprets the control sequence specification to generate the appropriate stream of
characters to execute the control sequence with the specified parameters.

60

Since many of the functions such as popup windows and dialogs require the screen to be restored
afterwards, and Unix does not provide a method for reading the current contents of the display, the termcap
module maintains a secondary copy of the display’s contents in memory. For each screen position, both the
character and its attributes (boldface, reverse video, etc.) are stored in an array which is referenced when
the current display contents must be retrieved. The putchar function updates the secondary copy with
tbe character and the current set of attributes at the same time it sends the character to be displayed on the
terminal,

8.6.2. Unix Socket Interface

The Unix socket interface functions by encapsulating requests and responses inside a simple protocol.
The protocol begins each exchange with a line specifying the number " arguments to the command,
followed by a line containing the command and finally zero or more lines containing the arguments. The
reply to the command consists of a line containing either "ACK" if successful or “"NAK" followed by an
error message if unsuccessful. If successful, the return value follows the ACK on a separate line.

A line in the sense used in the previous paragraph may actually be transferred i« multiple pieces and
reassembled by the receiver. Each packet of data transferred over the Unix socket consists of a length byte
followed by the actual data. This simplifies the socket-rcading code as it knows at all times how much data
may be read from the socket. To prevent overflowing the operating system’s buffers, each packet is kept to
a maximum of 127 data bytes (configurable); long lines are transparently split by the sender and
reassembied by the receiver. The bigh bit of the length byte is used to indicate a continuation, and informs
the receiver that more data will be appended to the current line.

Since Unix sockets only pass raw streams of bytes, all Lisp forms which must be transferred via the
socket interface are first converted to ASCII text with the format function and then reconverted to Lisp
forms with the read function. Thus there is a limitation on the forms which may be used as arguments t0
a command or as return values: the type of form must be known to the Lisp reader. For MASTER-D as
currently implemented, this limitation has no effect, since it only passes Lisp atoms and lists between itself
and the servers.

61

Chapter 9

Testing Protocol

Probably the most important portion of a dissertation is demonstrating the superiority of its methodology
over existing systems, or its efficacy when there are no systems with comparable coverage. Such a
demonstration requires extensive testing and performance evaluation. Thus, the methods by which
effectiveness will be measured should be established at the outset.

9.1. Performance Measurement

Performance is measured as the percentage of correctly-resolved demonstratives. In computing the
perceatage, instances for which the candidate space was reduced to two or three referents, one of which is
the correct one, count as one-half and one-third, respectively, of a comrect answer. However, these
instances are not counted as even partially correct should there have been only two or three candidates
before resolution.?

The effectiveness of reweighting will be guaged in relation to a baseline accuracy determined by running
the system with reweighting disabled. For simplicity, the strategies will each be given a weight of 100 for
the baseline test, and as an initial weight in all other tests unless otherwise indicated.

In addition, the overall effectiveness of the system will be compared against a minimum (null) heuristic.
Unfortunately, the minimum heuristic for demonstratives is not as straight-forward as for anaphoric
pronouns, where selecting the lexically most recent candidate is correct a significant percentage of the time.
Because of the wide variety of possible referents for a demonstrative, the minimum heuristic must either
take into account the type of reference (thus effectively incorporating the Reference Type strategy) or risk
greatly underperforming. Limiting the examination to demonstratives which reference objects allows
examination of the system’s effectiveness on a majority of the demonstratives with the same heuristic used
as a benchmark for pronominal anaphora, without implicitly including one of the system’s strategies in the
minimum heuristic. Therefore, the comparison for accuracy will be between MASTER-D and the beuristic
of selecting the lexically most recent object.

®This provision has no effect in practice, since only the first one or two sentences woud have so few candidates. A typical
demon-trative in the later portions of a lengthy text will typically have 200 o more candidates from which to select & referent.

62

9.2. Test Data

Lack of a suitable parser with a broad coverage caused the testing corpus to be scaled back somewhat.
The initial plan bad been to use three or more samples of different styles of text, each with some 200
demonstratives. As the parses needed to be written by hand rather than automatically generated, only a
single text was used, containing 98 demonstratives in 182 sentences. This text is listed in Appendix D.

Naturally, a test set of less than 100 demonstratives (of which only 68 are deemed to be in the scope of
the resolver’s capabilities) is insufficient for some of the tests one would like to perform on the system, and
will produce inconclusive results on other tests. Despite its relatively small size, bowever, this test set
proved to be near the upper limit of feasibility due to the slowness of the t2st machine. Test nins ranged in
duration from one bour 35 minutes to more than three hours.

9.3. Questions to be Answered

Naturally, there are many different questions one can attempt to answer when testing a system. Some of

the questions that might be answered are
1. How much does adaptive reweighting improve performance?

2. Which reweighting algorithm is optimal?

3. Does the order in which strategies are applied affect the accuracy of the system? If so, does
the optimal order depend on the current strategy weights?

4. Is it more effective to separate the substrategies of non-monolithic strategies into separately-
weighted strategies than to keep them combined?

5.Do suategy weights converge to different values for different types of text (dialogue,
narrztive, eic.)? ror different styles of the same type?

6. Do different classes of demonstrative references need different strategy weights? If so, how
much is performance affected if a demonstrative is incorrectly classified?

7. How much does each resolution strategy centribute to the overall performance?
8. Are the strategies in fact independent?
9. Are there sets of strategies which exhibit synergy?
10. Is there a threshold score above which one can immediately discard all other candidates?

The ideal answers to the first two questions would be that adaptive reweighting greatly improves
performance and that a simple, computationally cheap reweighting algorithm is either optimal or so close to
optimal that it is not worth using the actual optimal algorithm. In reality, the efficacy of adaptive
reweighting depends considerably on how closely the initial strategy weights approximate the optimum
suctegy weights. If the optimum happens to have weights which are very nearly equal, then reweighting
will appear to have little effect because the original weighting will already perfonn very well. However,
this case is not the most probable, because recency effects and local constraints such as number and gender
are likely to have a much larger impact on the overall accuracy of resolution than most other strategies.

Because the resolution strategies are meant to be independent, it seems improbable that the order of

63

application will have an effect, provided that all strategies are applied to all candidates. In the presence of
pruning, however, changing the order of evaluation may indeed change the outcome, as a candidate may be
prematurely discarded which would bave been kept under a different evaluation order.

There is no clearcut a priori answer on the matter of separating out substrategies into separately-
weighted strategies since two opposing effects apply. On the one hand, the finer reweighting possible with
separately-weighted substrategies may substantially increase the accuracy of the resolution process. On the
other hand, the additional variables introduced with the additional weights may increase the time needed t0
converge on the optimum weights to the point where convergence is not achieved on reasonably-sized
texts.

As was shown in Section 2.3, the relative frequencies of use differ between various kinds of text.
Therefore, one would expect the optimum strategy weights to differ between different kinds of text, and
perhaps even between different authors of the same kind of text. Similarly, one would not be surprised to
find that the referencing patterns for different types of references (object, event, action, time, etc.) are
sufficently different to require different strategy weights; it is also quite possible that the optimum weights
will differ depending on the location of the demonstrative in the parse (subject, object, theme, etc.) While
the current system is not capable of supporting multiple weights per strategy, such support could be added
with the appropriate modifications to the strategy applier and reweighter. Unfortunately, the limited test
corpus does not allow questions about difering optimum weights to be answered at this time. Further, each
criterion on which the weights are differentiated (reference type, location in parse, or possibly something
else) increases the required test size because the differentiation effectively splits the test set into groups of
tests, one per criterion value.

Determining whether the strategies are truly independent requires an analysis of the scores they produce
to check for correlation (or anti-correlation) between strategies. Correlated strategies can cause problems
with unsupervised reweighting, as was discussed in Section 7.3, which is the reason why the current system
always queries the user to determine the actual antecedent to a demonstrative. Two strategies which seem
likely to be correlated are proximity and salience, since salient discourse entities tend to be conceptually
nearer and thus more likely to use a "near” demonstrative, and nearer objects tend to be more salient.

To determine whether any synergistic effects are present, one must check whether certain groupings of
strategies give confidence beyond their individual reliabilities when all members of the grouping prefer the
same candidate. This may be done with statistical analysis similar to that used in determining correlations,
but synergy need not imply correlation or vice versa. Synergistic sets of strategies may well disagree on
the desired candidate in most cases, yet be exceedingly accurate in those cases where all members of the
synergistic set agree on a single candidate.

Answering the final question listed above involves examining the final scores for the candidates in each
resolution. If the most-preferred candidate’s score is always above some value that is rarely exceeded by
less-preferred candidates, then the answer is Yes, such a threshold exists. Strategy reweighting complicates
matters, however, and it may not be possible to make any determination until the strategy weights have
converged and reweighting is disabled.

9.4. Biases

When testing any system, one must always be aware of the potential biases which could skew the results.
The known biases for the tests performed on the system fall into several classes as listed below, some of
which skew the results toward greater accuracy and some toward lesser accuracy. The biases which will be
discussed in this section involve

1. Parses

2. World model
3. Ontology

4. Reweighting

Because the parses were hand-written, they can contain more accurate information than automatically-
generated parses in certain areas. However, they were hand-written by a non-linguist, and thus are missing
various nuances, and in a few cases entire subclauses. While strategies which benefit from tags and similar
parser hints in the parse (such as Salience Preference) will show better performance, the lack of various
details in the parses is likely to be detrimental to MASTER-D. The overall effect on accuracy is expected
to be neutral or slightly negative.

The world model used for the tests described in the next chapter is quite limited. Thus, the world modeler
will in most cases be unable to determine relationships between objects which a more complete worid
model would be able to track. This results in an underrepresentation of the world modeler’s efficacy. The
sample text used in testing causes a further reduction in apparent efficacy because it is not a narrative and
thus provides few opportunities to use relations established earlier in the text.

‘The ontology used in testing is also fairly limited, including Little knowledge not required to represent the
items actually present in the sample text. While this will have the effect of focusing any metonymic
searches on items which are likely to be relevant, the limited knowledge will probably be detrimental to
other portions of the system.

None of the reweighting methods is particularly sophisticatéd, so the efficacy of reweighting is expected
to be significantly underestimated by the results of using the existing methods. In particular, none of the
reweighting methods addresses the decay function, which affects the adjusted scores of several of the
resolution strategies; this omission means that a strategy whose scoring decays at the wrong speed cannot
bave its weight properly optimized. Further, one of the reweighting methods (weighting by accuracy) is
strongly dependent on the values returned by the accuracy function. Since even slight variations in the
accuracy function can bave large effects on the computed accuracies, the particular reweighting method
must be tested with each of the various accuracy functions available to the user.

65

Chapter 10

Performance and Test Results

This chapter presents the results of performing accuracy and timing tests on the MASTER-D system. The
test corpus, consisting of 182 parses containing 98 demonstratives, which was used for these tests is Listed
in Appendix D.

In order to0 keep the number of candidates for each demonstrative to a manageable level, the candidate
management was configured to remove any candidates which were more than 20 sentences "old”.
Paragraph breaks counted as ten sentences, so at most ten sentences from the previous paragraph--and none
from any prior paragraphs--were included in the candidate pool. In one case, this resulted in the desired
antecedent being removed from the pool before the demonstrative was reached.

10.1. Accuracy without Reweighting

When run without reweighting, the MASTER-D system gives an indication of the accuracy of the
resolution strategies for the default or manually-assigned weights for the strategies. This may then serve as
the baseline for comparison with the various reweighting methods.

The results of executing the resolver on the test corpus with reweighting disabled are shown in Figures
10-1 and 10-2. Figure 10-1 tallies the outcome of the resolutions, broken down separately for
demonstrative pronouns and NPs. For each resolution, four different outcomes are possible:

1. correct The desired referent is returned.

2. part.correct The desired referent is one of a swmall set of returned candidates. The
correct resolutions are further categorized by the size of the returned set (ie 1/4meansthat
four candidates were returned).

3. incorrect The desired referent is not among the returned candidates. The special case of a
NIL return value is listed on the following line.

4. unhandled The demonstrative reference is beyond the scope of the resolver, such as
intrasentential or extralinguistic references; however, the resolver may (and often does)
correctly indicate that the referent is not in its candidate pool by returning NIL.

The second table, Figure 10-2, lists a more precise assesssment of the resolver’s accuracy based on
whether the demonstrative is of a type that can be handled. This table considers the demonstrative to have
been correctly resolved if the set of candidates was narrowed to no mmore than three, or a demonstrative with
no referent in the candidate pool is resolved to NIL. The "weighted correctness” lines consider the

demonstrative pronouns

correct: 18 28.1%

part.correct: 12 18.8%
12 5
14 2
1/5 2
1/6 1
177 1.
138 1

incorrect: 17 26.6%
NIL 3

unhandled: 17 26.6%

total o4 100%

demonstrative NPs

correct: 7 20.6%

part.correct: 1 2.9%
13 1

incorrect: 13 382%
NIL 3

unhandled: 13 382%

total 34 100%

Figure 10-1: Summary of Resolutions without Reweighting

resolution to have been half comrect if the final result was a set of two referents and one-third correct if the
result was a set of three referents.

For comparison, the following accuracies are obtained using the naive heuristic of choosing the lexically
nearest noun or pronoun from the preceding sentence:

demonstrative pronouns 14 21.9%
demonstrative NPs 4 11.8%
overall 18 18.4%

67

demonstrative pronouns

in resolver’s scope: 47 (13.4%)
- at least 1/3 correct: 23 48.9%

weighted correctmess: 20.5 43.6%
out of scope: 17 (26.6%)
correctly resolved: 8 47.0%
total correct: 31 484%

demonstrative NPs
in resolver's scope: 21 (61.8%)
at least 1/3 correct: 8 38.1%
weighted correctness: 733 34.9%
out of scope: 13 (382%)
correctly resolved: 1 7.7%
total correct: 9 265%

overall
in resolver’s scope: 68 (69.4%)
at least 1/3 correct: 31 45.6%
weighted correctness: 27.83 40.9%
out of scope: 30 (30.6%)
correctly resolved: 9 30.0%
total correct 40 40.8%

Figure 10-2: Resolution Accuracy without Reweighting

demonstrative pronouns

correct: 20 312%

part.correct: 11 172%
12 3
13 1
1/4 2
1/5 2
1/6 1
1 1
18 1

incorrect: 16 25.0%
NIL 0

unhandled: 17 26.6%

total 64 100%

demonstrative NPs

correct: 7 20.6%

part.comrect: 2 5.9%
13 2

incorrect: 12 35.3%
NIL 3

unhandled: 13 38.2%

total 34 100%

Figure 10-3: Summary of Resolutions with Fixed-Percentage Reweighting

10.2. Accuracy with Reweighting

Comparing the accuracy without reweighting to the accuracy with various reweighting functions indicates
how effective the reweighting functions are. A more accurate measure may be obtained by using the final
weights as the initial weights for a second run over the same input. The second run will use the optimized
weights for all demonstratives, while the first run began with less optimal weights and had to adjust them
towards more optimal values.

Figure 10-3 and the second column of Figure 10-6 show the results when using a fixed change of five
percent of the current weight. If the strategy is deemed to have voted correctly, its weight is increased by
five percent; if incorrectly, it is decreased by five percent, and if noncommittal, the weight remains
unchanged. Due to the rescaling performed after reweighting, the effective weight change may differ. The
final strategy weights are shown in Figure 10-14; as is expected, the three strongest strategies are local

69

demonstrative pronouns

correct: 19 29.7%

part.comect: 12 18.8%
12]
1/4 1
s 2
1/6 1
1 1
178 1

incorrect: 16 25.0%
NIL 3

unbandled: 17 26.6%

total 64 100%

demonstrative NPs

correct: 7 20.6%

part.comrect: 2 5.9%
13 2

incorrect: 12 353%
NIL 3

unhandled: 13 382%

total 34 100%

Figure 10-4: Summary of Resolutions with Incremental Reweighting

constraints, reference type, and recency, and these strategies have the highest weights at the end of
processing.

Incremental reweighting was used in the run summarized in Figure 10-4 and the third column of Figure
10-6. For this method, the strategy weights are adjusted up or down by an absolute amount which
decreases as more demonstratives are processed. This increment is initially 30 points; once ten
demonstratives have been processed, the increment is set to 30 divided by one-tenth the number of previous
resolutions. Thus, when the final demonstrative in the test corpus is processed, the increment is only 3.1.
As with all reweighting methods, the strategy weights are rescaled (normalized) after reweighting, so the
effective change in a strategy’s weight depends on the changes in all other weights; the final weights are
shown in Figure 10-14.

The test corpus was processed a second time with incremental reweighting, using the final strategy
weighte of the first run as the initial weights for the second run. The results of this second run are
summarized in Figure 10-5 and the last column of Figure 10-6. The second run produced a slight

70

demonstrative pronouns

correct: 15 23.4%

part.comrect: 19 29.7%
12 7
13 4
1/4 1
1/5 3
1/6 1
177 1
18 1
19 1

incorrect: 13 20.3%
NIL 3

unhandled: 17 266%

total 64 100%

demonstrative NPs

correct: 7 20.6%

part.correct: 4 11.8%
12 1
13

incorrect: 10 29.4%
NIL 3

unhandled: 13 382%

total 34 100%

Figure 10-5: Summary of Resolutions with Incremental Reweighting, Second Run

additional improvement in performance, though the number of demonstrative pronouns resolved uniquely
to the correct referent decreased somewhat. The low weights for several of the strategies caused a larger
number of candidates to pass the high-score threshold of 98% of the highest score, and this turned some
previously-unique resolutions into resolutions returning multiple candidates. Conversely, some resolutions
which formerly excluded the desired referent could include it because the smaller weight for some strategy
which had previously caused it to be ruled out allowed it to fall within the high-score threshold. This is
precisely the idea behind adaptive reweighting—lessen the importance of the incorrect strategies so that the
correct strategies can override them.

In addition to the four test runs detailed above, three additional runs were performed using the weight-by-
accuracy method and three different accuracy functions (modified absolute rank, relative rank, and relative

71

No Rewelighting Pixed Incremental S8econd Incr.

demonstrative pronouns
in resolver’s scope: 47 {(73.4%) 47 (73.4%) &7 (73.4%) 47 (73.4%)
at least 1/3 correct: 23 48.9% 24 §1.1% 25 $3.2% ’ §5.3%
welghted correctpness: 20.5 43.6% 21.83 {46.4% 22 46.8% 19.83 42.2%

out of scope: 17 (26.6%) 17 (26.6%) 17 (26.6%) 17 (26.6%)
correctly resolved: 8 47.0% 8 47.0% 8 47.0% 8 47.0%

total correct: 31 48.4% 32 50.0% a3 51.6% 34 53.1%

demonstrative NPsg
in resolver’s scope: 21 (61.8%) 21 (61.68%) 21 (61.8%) 21 (61.8%)
at least 1/3 correct: &8 38.1% 9 42.9% 9 42.9% 11 52.4%
weighted correctness: 7.33 34.9% 7.66 36.4% 7.66 36.4% 8.5 40.5%

out of scope: 13 (38.2%) 13 (38.2%) 13 (38.2%) 13 {(38.2%)

correctly resolved: 1 7.7% 1 7.7% 1 7.7% 1 T.7%

total correct: 9 26.5% 10 29.4% 10 29.4% 12 35.3%
overall

in resolvar’s scope: 68 {69.4%) 68 (69.4%) 68 (69.4%) 68 {69.4%)
at least 1/3 correct: 31 45.6% 33 48.5% 34 50.0% 37 54.4%
weighted correctness: 27.83 40,.9% 29.5 43.4% 29.66 43.6% 28.33 41.7%

out of scope: 30 (30.6%) 230 {(30.6%) 230 {(30.6%) 30 (30.6%)
correctly resolved: 9 30.0% 9 30.0% 9 30.0% 9 30.0%
total correct: 40 40.8% 42 42.9% 43 43.9% 46 46.9%

Figure 10-6: Resolution Accuracy with Various Reweighting Methods

value); a final run made after correcting the problems discussed here will be presented later. These runs
aborted due to a short-coming in the user interface code, which proved unable to deal with menus more
than one screen (60 lines) in length. Before these runs aborted, however, it was already clear that the
weight-by-accuracy method was producing significantly poorer results than no reweighting. These poor
results appear t0 be due primarily to negative weights for better strategies such as recency. On the run
using the modified absolute ranking as the accuracy function, the constraint strategies all tended toward a
50 percent accuracy rating, resulting in zero weights for their preference portions, A summary of the
partial results is shown in Figures 10-7 and 10-8, but it does not adequately reflect the subjective feeling
that the resolver was producing much more ambiguous results--several of the incorrect resolutions returned
sets of more than 20 candidates, none of which was the desired referent. The most ambiguous result for
any of the other reweighting methods contained fourteen candidates, none of which was correct, but all
other resolution results with those methods contained ten or fewer candidates. A massively ambiguous
result (at least 30 candidates remaining) was the cause of each run’s premature termination.

The problems with weight-by-accuracy point out a shoricoming in the accuracy functions: what is needed
is less an overall accuracy computation than one which takes into account only those resolutions on which

72

Absol.Rank Rel. Rank Rel. Value
demonstrative pronouns

correct: 4 19.0% 8 19.0% 8 18.2%
part.correct: 2 9.5% 10 23.8% 11 25.0%
incorrect: 14 66.7% 14 33.3% 15 34.1%
unhandled: 1 4.8% 10 23.8% 10 22.7%
total: 21 100% 42 100% 44 100%
demonstrative NPs

correct: 3 30.0% 3 15.0% 3 15.0%
part.correct: 0 0.0% 2 10.0% 2 10.0%
incorrect: 4 40.0% 8 40.0% 8 40.0%
unhandled: 3 30.0% 7 35.0% 7 35.0%
total: 10 100% 20 100% 20 100%

Figure 10-7: Summary of Weight-by-Accuracy Tests

the strategy offered an opinion. A partial attempt at effecting this modification was the addition of the 50%
accuracy score for resolutions on which all returned values were zero, but this proved to be inadequate.
The accuracy function should store both the number of applicable resolutions and the total accuracy points
for those resolutions, rather than relying on a global variable to count the total resolutions. This
modification was made for the final test im,

Another factor which may affect resolution accuracy is the handling of substrategies. Two of the
strategies (Local Constraints and Salience) consist of multiple substrategies, and these substrategies have
thus far been ignored, instead reweighting the strategies as a monolithic whole, MASTER-D has the option
to treat substrategies as separate strategies for the purposes of adjusting strategy weights. Figure 10-9
compares the incremental adjustment method when applied to substrategies both monolithically and
individually. For this small test set, the results are too nearly equal to make any definitive observation
about which approach is better—in fact, the results are identical except for two resolutions in which the
monolithic approach returned two candidates and the individual approach returned three candidates.

One final test run using the weight-by-accuracy method and the relative-rank accuracy function was made
after two modifications were performed. The first modification has already been mentioned: changing the
accuracy computation to disregard resolutions where the strategy did not apply and provided no opinion.
The second modification was a slight change in the function used to convert the accuracy percentage into
an actual strategy weight. Instead of linear function from O to 100 into -W to +W (where W is the initial
strategy weight, 100 points by default), the new function is a linear function retuming -0.25W to +W. This
shifts the zero point from 50 percent down to 20 percent and prevents the strategy weights from going
negative for the test set being used. The results of the run with these two modifications are shown in
Figures 10-10 and 10-11. These figures show this test run to have been slightly better on pronouns and
slightly worse on NPs than the incremental adjustment method. A much larger test set would be required to
definitively state whether this particular variation of weight-by-accuracy is better or worse than incremental
reweighting.

73

Absolute Rank Relative Rank Relative Value
demonstrative pronouns
in resolver’s scope: 20 (95.2%) 32 (76.2%) 34 (77.3%)
at least 1/3 correct: 4 20.0% 12 37.5% 12 35.3%

weighted correctness: 4 20.0% 9.83 30.7% 9.83 28.9%
out of scope: 1 (4.8%) 10 (23.8%) 10 (22.7%)
corractly resolved: 0 0.0% S 50.0% S 50.0%
total correct: S 23.8% 17 40.5% 17 38.6%

demonstrative NPs

in resolver’s scope: 7 (70.0%) 13 {65.0%) 13 (65.0%)
at least 1/3 correct: 3 42.9% 4 30.1% 4 30.1%
weighted correctness: 3 42.9% 3.33 25.6% 3.33 25.6%
out of scope: 3 (30.0%) 7 (35.0%) 7 {35.0%)
correctly resolved: 0 0.0% 0 0.0% 0 0.0%

total correct: 3 30.0% 4 20.0% 4 20.0%

overall

in resolver’s scope: 27 (87.1%) 45 (72.6%) 47 (73.4%)
at least 1/3 correct: 7 25.9% 16 35.6% 16 34.0%
welghted correctness: 7 25.9% 13.16 29.2% 13.16 28.0%
out of scope: 4 (12.9%) 17 {27 .4%) 17 {36.2%)
correctly resolved: 0 0.0% 5 29.4% 5 29.4%
total correct: 7 22.6% 18.16 29.3% 18.16 28.4%

Figure 10-8: Resolution Accuracy with Weight-by-Accuracy Reweighting

Some general observations were made during the course of testing. The most-ambiguous resolutions
were generally those involving lexical and logical references, since those types of candidates have only
rudimentary support in the current implementation. Further, these resolutions were essentially unaffected
by changes in strategy weights precisely because of the rudimentary nature cf the system’s support for
them. In general, if a demonstrative was resolved correctly with reweighting disabled, it was also resolved
correctly with each of the successful reweighting methods, though there were a few which became
ambiguous or even failed to resolve correctly after reweighting.

A few particular erroneous resolutions were noted as occurring on all test runs except the original
weight-by-accuracy runs (which produced a considerable amount of nonsense). For two demonstratives, ali
of the candidates presented in the result set were lexical (surface string) candidates, even though the desired
referent was not; in one case, the system knew from user interaction that the desired referent was not a
lexical item. For that resolution, the result set consisted of eitber two or three items (depending on the
reweighting method in use), one of which was the surface form of the desired candidate. This error may
stem from the rudimentary support for lexical items, for which only the recency and reference type
strategies apply (focus applies only after a demoustrative has already referenced the lexical item).

74

No Reweighting Incr.Monolith Incr.SepSubstr
demonstrative pronouns
in resolver’s scope: 47 (73.4%) 47 (73.4%) 47 (73.4%)

at least 1/3 correct: 23 48.9% 25 53.2% 25 $3.2%
waighted correctness: 20.5 43.6% 22 46.8% 21.66 46.1%
out of scope: 17 (26.6%) 17 (26.6%) 17 (26.6%)
corraectly resolved: 8 47.0% 8 47.0% 8 47.0%
total correct: 31 48.4% 33 51.6% 33 51.6%

demonstrative NPs
in resolver’s scope: 21 (61.8%) 21 (61.8%) 21 (61.8%)

at least 1/3 correct: 8 38.1% 9 42.9% 9 42.9%
weighted correctness: 7.33 34.9% 7.66 36.4% 7.66 36.4%
out of scope: 13 (38.2%) 13 (38.2%) 13 (38.2%)
correctly resolved: 1 7.7% 1 7.7% 1 7.7%
total correct: 9 26.5% 10 29.4% 10 29.4%
overall
in resolver’s scope: &8 (69.4%) 68 {65.4%) 68 {69.4%)
at least 1/3 correct: 31 45.6% 34 50.0% 34 $0.0%
welghted correctness: 27.83 40.5% 29.66 43.6% 29.33 43.1%
out of scope: 30 (30.6%) 30 {30.6%) 30 (30.6%)
correctly resolved: 9 30.0% 9 30.0% 9 30.0%
total correct: 40 40.8% 43 43.9% 43 £3.9%

Figure 10-9;: Comparison of Monolithic and Individual Reweighting of Substrategies

Another erroneous resolution could be corrected, but only by applying one of the recovery strategies

before the main resolution strategies. In the example of

I'm a musician.
That’s what I was doing before....

A metonymic reference is made to the profession of a musician, i.e. playing music. Since metonyms are
not examined unless no other candidate is suitable, the presence of another candidate which can even
remotely be matched to the demonstrative blocks the use of metonyms, preventing correct resolution of the
demonstrative. Some method of determining likely metonymic references would be desirable in order to
allow the additional candidates reached through a metonymic relation to be added to the candidate pool
prior to the start of the resolution process, but only when needed in order to avoid an unacceptable increase
in processing time.

Finally, tuning the ontology specifically for the text being used would probably allow several additional
demonstratives to be correctly resolved.

75
demonstrative pronouns
correct: 20 31.3%
part.correct: 12 18.8%
12 5
1/4 2
1/5 2
1/6 1
17 1
18 1
incorrect: 15 23.4%
NIL 3
unhandled: 17 26.6%
total 64 100%
demonstrative NPs
correct: 7 20.6%
part.correct: 1 2.9%
13 1
incorrect: 12 353%
NIL 3
unhandled: 13 38.2%
total: 34 100%

Figure 10-10: Summary of Resolutions with Corrected Weight-by-Accuracy

10.3. Strategy Weights

This section will explore the actual weights of the resolution strategies, which so far have been ignored iu
favor of other aspects of the resolution process such as the results. Figure 10-12 shows the statistics
produced at the end of the run using the Incremental Adjustment reweighting method. The "Reweights”
column indicates how many times the strategy’s weight was adjusted upward and how many times it was
adjusted downward, ignoring changes produced by normalizing the strategy weights. This column also
gives an indication that the strategies other than Local Constraints, Accessible Referents, Reference Type,
and Recency are only infrequently used.

The grapb in Figure 10-13 shows the evolution of the strategy weights for threc strategies. The upper
curve is the Reference Type strategy, the middle curve is the Recency preference, and t.e lower curve is
the Salience strategy. Strategy weights were rounded to the nearest point before plotting, so some of the
finer weight variations later in processing are not seen. Because of the normalization process, the weights

76

No Rewelighting

demornstrative pronouns
in resclver’s scope: 47
at least 1/3 correct: 23

waighted correctness: 20.5 43.6%

out of scupe: 17
correctly resclved: 8
total correct: 31

demonstrative NPs
in resolver’s scope: 21
at least 1/3 correct: 8

weighted correctness: 7.33 34.9%

out of scope: 13

correctly resolved: 1

total correct: 9
overall

in resolver’s scope: 68
at least 1/3 correct: 31

welghted correctness: 27.83 40.%%

out of scope: 30
correctly resolvad: 9
total correct: 40

By Accuracy

(73.4%) 47 (73.4%)
48.9% 25 53.2%
22.5 47.9%

(26.6%) 17 (26.6%)
47.0% 8 47.0%
48.4% 33 51.6%
{61.8%) 21 (61.8%)
38.1% 8 38.1%
7.33 34.9%

{38.2%) 13 {38.2%)
7.7% 1 7.7%
26.5% 9 26.5%
(69.4%) &8 {69.4%)
45.6% 33 48.5%
29.83 43.9%

(30.6%) 30 (30.6%)
30.0% 9 30.0%
40.8% 42 42.9%

Incremental

47 (73.4%)
25 53.2%
22 46.8%

17 (26.6%)
8 47.0%

33 51.6%
21 (61.8%)}
8 42.9%

7.66 36.4%

i3 (38.2%)
1 7.7%

10 29.4%
68 {69.4%)

34 50.0%
29.66 43.6%

30 (30.6%)
9 30.0%
43 43.9%

Figure 10-11: Resolution Accuracy with Corrected Weight-by-Accuracy

StrategQy

Initial
Weight

Final
Weight

Op/Down Accuracy

- - s WY N . W W N s e NP AP R TR AR M T AR e e Y S A W YW W R T e W A

Local Constraints
Case-Rcle Constraints
Accessible Referents
Referance Type
World-Model Constraints
Proximity

Racan.y

Case-Role Persistence
Salience

100.000
100.000

0.000
100.000
100.000
100.000
100.000
100.000
100.000

2086.532
3.2
0.000
263.770
23.221
36.245
97.293
29.235
40.486

Reweights
77/ 2
0/ 0

o/ 0
71/ 4
e/]
12/ 0
63/ 13
16/ 0

4]

- - " . A > - —— W A Ae D e e R P Ve e A e e

Total Rescaling Factor: 0.23

LR R 2t 2 L 23 22 23 2 2 LAl sl sy 2]

94.94%
51.90%
$0.00%
94.30%
$0.00%
42.30%
70.67%
41.67%
16.98%

Figure 10-12: Strategy Weight Statistics at End of a Test Run

77

120 AA

L
LI

o+
L ol
R od

L
13

1
¥
0 10 20 30 40 50 60 70 80 90 100

Figure 10-13: Change in Strategy Weights over Time

shown in the graph are influenced not only by the reweighting of the individual strategies, but also by the
overall trend in weights. Thus, the gradual decline in Salience’'s weight (the lower curve) after 40
resolutions is due as much to an average increase in weight of the other strategies as to changes to Salience.

78

Strategy Pixed Increm. 2nd Inc By Accl By Acc? ByAcc (corr)
Local Copatrainte 359.6 286.5 391.4 0.0 270.3 222.7
Case-Role Constraints 8.0 23.2 2.8 0.0 6.0 13%.2
Reference Type 295.1 263.8 341.6 0.0 282.4 131.6
World-Model Constraints 8.0 23.2 2.8 0.0 0.0 139.2
Proximity 17.5 36.2 6.3 ~203.4 138.2 75.6
Recency 69.2 97.3 43.3 -134.1 -5.0 87.9
Case-Role Persistence 16.7 29.2 4.1 -152.0 ~52.1 53.1
Salience 25.9 40.5 7.8 -310.6 46.1 40.5

Figure 10-14: Final Strategy Weights

Figure 10-14 summarizes the strategy weights at the end of various test runs. The first five columns show
the weights after using the fixed-peiccitage adjustment, the incremental change method using first the
default initial weights and then the result of the first run, and weight-by-accuracy with the modified
absolute rank and relative value accuracy functions, respectively. One can easily see that the first three
columns show similar results while the two weight-by-accuracy columns are very different. The final
column shows weight-by-accuracy after making the two modifications to avoid the problems encountered
in the first two tests; this run used the relative rank accuracy function. For this column, the Case-Role
Constraints and World-MOdel Constraints strategies have the bighest weights because they never applied
for the test set being used, and thus are computed to have been correct 100% of the time. Contrast this with
the first three ¢columns, where these two strategies had the lowest weights because their weights were never
changed while all other strategies had their weights increased more often than decreased.

10.4. Speed

The following measurements of CPU times and elapsed times were made on an IBM RT PC with 12MB
RAM running the Mach operating system and X Windows, using CMU Common Lisp version M2.9. The
IBM RT is, by current standards, a rather slow machine (5-6 VAX MIPS); more recent workstations could
execute the software about an order of magnitude more quickly. More RAM would noticeably speed up
processing, as the IBM RT suffered a fair amount of disk thrashing while executing MASTER-D,
particularly during garbage collection.

Figure 10-15 shows the execution profile statistics generated by MASTER-D at the end of a typical run
on the test corpus. Because the statistics were gathered using functions with a granularity of 0.01 second,
some inaccuracies are possible for the more quickly executing functions (such as the anomalous case of the
world modeler, which shows CPU time greater than real time). The strategy applications happen so
quickly that it is likely that a significant portion of the time credited as Resolution Overbead was in fact
spent in the actual application of resolution strategies.

The different phases of execution listed in Figure 10-15 are:

79

Phase Real Time CPU time Calls
Parser Interface 36.61 sec 23.55 sec 368
Generator Interface 133.49 sec 114.40 sec 184
Canonicalization 21.27 sec 14.19 sec 366
Reweighting 3.18 sec 0.80 sec 100
Strategy Application 1028.63 sec 943.50 mec 130860
Recovery Strategiles 18.43 sec 13.61 sec 39
Resolution Overhead 677.61 sec 598.84 sec 98
World Model 205.57 sec 237.71 sec 14725
ontology 24.72 sec 18.47 sec 17235
Candidate Management 149.84 saec 140.24 sec 366
Corpus Access 0.00 sec 0.00 sec 1
Garbage Collection 1081.55 sec 106.53 sec @
User Interface 2280.36 seac 369.91 sec 1121
Other 80.74 sec 59.50 sec 1l

Total $742.23 sec 2631.46 sec

Figure 10-15: Execution Profile for a Test Run

1. Parser Interface

The parser interface retrieves a parse either from a parser running in a separate process, of

from a file as for these tests.
2. Generator Interface

The generator interface either transmits the resolved parse to the generator running in a

separate process, or stores it in a file as for these tests.
3. Canonicalization

Before the parse can be used, it must be canonicalized, and the resolved parse must be

decanonicalized before being output.
4. Reweighting

The amount of time required to adjust the strategy weights after every resolution varies

according to the reweighting method, and is listed umder this beading.
5. Strategy Application

The category counts the amount of time actually spent applying the resolution strategies to

the candidates.
6. Recovery Strategies

How much time was spent in attempting to determine additional candidates for a failed
resolution or disambiguate an ambiguous resolution; most of the time for the Ask the User

strategy is charged to User Intertace below.
7. Resolution Overhead

The overhead for resolving a demonstrative includes the time to set up the agenda, actually
run the agenda, compute candidate scores, and perfonn administrative tasks such as updating

strategy voting histories.
8. World Model

Maintaining the world mo-el and checking for world model relations requires the time listed

under this category.
9. Ontwlagy

The Ontology category includes the time needed to load the ontology and perform various

lookups on it.

80

10, Candidate Management
How much time was spent removing old candidates from the pool and adding new candidates

after every parse was processed.

11. Corpus Access
This category counts the time spent accessing a corpus of sentences to be parsed, and is not
applicable in this case.

12. Garbage Coliection
The time spent in the Lisp garbage collector.

13. User Interface
The time spent displaying menus, status lines, prompts, etc., and waiting for user input.

14. Other
Anything else not covered by one of the previous categories.

The initial implementation of the strategy applier was much slower due to overhead in the DIBBS
(Device Independent BlackBoard System {30)) system, which was used to implement the agenda. On
determining that the system was unacceptably slow, DIBBS was replaced with a simple agenda handler
optimized for speed rather than the generalized agenda bandling supported by DIBBS, and the DIBBS
““units”” were replaced with equivalent structures. Additionaily, some frames which had been DIBBS units
were changed into regular FrameKit frames. These changes resulted in a speedup of nearly one second of
CPU time per strategy application. At that early stage, with only the simple, computationally inexpensive
strategies implemented, this represented an order of magnitude speedup even though the entire system
(except FrameKit and DIBBS, but including the new agenda handler) was interpreted rather than compiled.
The speedup ratio would bave been even greater if the system had been using compiled Lisp at the time.

Some additional speedup was achieved by replacing several key FrameKit functions with versions which
do not perform demon checking. Demon checks in FrameKit are very expensive as every access o a frame
involves an is-a-p call which can potentially involve many levels of inheritance before retuming. In the
earlier KBMT-89 system, an equivalent replacement resulted in an overall speedup by a factor of 2.5 in the
Augmentor portion. Since this replacement was made in MASTER-D at the outset, the exact speedup from
this change is not known.

At the end of development, a near-total replacement of FrameKit resulted in an overall speedup by
approximately a factor of two over the tweaked FrameKit, and reduced garbage collections by a factor of
five. The FrameKit replacement removed all of the generality provided by FrameKit which was not
actually required for MASTER-D, such as facets and views, multiple inheritance types, and relations with
automatically-maintained inverses. The replacement code provides a subset of FrameKit's interface and
uses sirnilar (but simplified) internal data structures. The reduction in garbage collections is due in part to
the simplified data structure (there are two fewer levels of nested lists) and in part to the provision of a new
function which returns the fillers of 2 slot without making a copy for those callers (almost all) who do not
destructively modify the returned list of fillers.

81

10.5. Conclusions

The multiple-strategy approach is effective in resolving demonstrative references, and is improved with
the addition of adaptive reweighting. As is shown in Figure 10-16, MASTER-D is more than twice as
effective as a naive heuristic even without reweighting, and achieves a further eleven to eighteen percent
increase in correct or partially correct resolutions with reweighting!®. Even on demonstrative references
which are not within the scope of the resolver’s capabilities, the correct result (that there is no available
referent) is frequently returned.

Although two of the three reweighting methods which were implemented were successful and increased
the resolver’s accuracy, the third method (weight by accuracy) did not work as anticipated and required
modification. The negative strategy weights assigned to strategies with accuracies less than 50 percent
caused wild swings in resolutions, particularly when the Recency Preference’s weight became negative.
After modification to return negative weights only for accuracies below 20 percent (which never occur on
the test set used) and to compute the accuracies based only on those resolutions for which a strategy offered
an opinion, the third method worked approximately as well as the othef two.

Further work is warranted on determining an appropriate point at which to purge candidates. One of the
demonstratives in the test corpus was not resolvable because its referent had already been removed from
the candidate pool due to its age. A more flexible limit which takes factors such as salience and focus into
account would likely reduce the incidence of such premature purging without unduly increasing the size of
tbe candidate pool and slowing execution.

Not all of the questions raised in Section 9.3 have been answered, but the following answers are

available:
1. How much does adaptive reweighting improve performance?
For the test case in this dissertation, the resolver was able to identify referents for 11 to 18
percent more demonstratives (depending on whether all partially-correct resolutions are
counted) when adaptive reweighting was used.

2. Which reweighting algorithm is optimal?

Fixed-percntage and incremental adjustment appear to be similar in efficacy; weight-by-
accuracy proved to be detrimental to the system’s performance in its original implementation,
but performed similarly to the other two methods after modification. For this small test set
(producing results which are by no means definitive), incremental adjustment performed best
if total resolutions are counted and the corrected weight-by-accuracy strategy performed best
if weighted correctness is examined. However, the differences between the three algorithms
are negligible and will require much larger test sets to produce a significant difference.

3.Is it better to reweight strategies consisting of multiple substrategies as a whole or to
consider the substrategies as invidually-weightable strategies?
For the small test set used here, it is not clear which is better, as the two approaches
performed nearly equally.

4. Does the order in which strategies are applied affect accuracy?

19N ote that, unlike earlier sections of this chapter, partially-correct resolutions include all resolutions where the desired referent was
one of the returned set of candidates (cootaining up to nine candidates) rather than just those where the returned set contained at most
three candidates. This allows inclusion of resolutions on the less-supported candidate types such as lexical candidases.

82

Correct

Correct

8
Partially E

50

45

35

HECEINERIR RIS ARAnRT US|

30

25

s SRBBRERINSES

20

T
111

TR LI IIIY

15

BhEan S

Lttty

1SRN IR EAUEDADEES
sanasdnsunERY
X

I neussNIITNEIEASYS
IR
1

T/ U = i

TR LITET

18
[
1
»
»
[
samenn
vous

.
b4
.
pidd
e

yeasToETINERAARORAS
IR ITIITIE:
+TT1T PTYLE

¢
4

| i i
Noun Phrases Pronouns Overall

Key
Bl Naive EEH Fixed-Percentage No Reweight, Fixed-% Weights

oy

cone

wone

jonne

Z2 No Reweighting [Incremental No Reweight, Incr-Change Weights

E=3 Total Demonstratives within resolver’s scope BEN Incremeatal, Second Run

Figure 10-16: Summary of Correct Resolutions

Not for these test runs, which (in order to perform reweighting) applied all strategies to all
candidates. The order can only have an effect if resolution is terminated before complete
application of all strategies.

5. How much does each resolution strategy contribute to the overall performance?
As *vas shown in the previous chapter, Local Constraints and Reference Type dominate, both
in final weight and in accuracy measures, while Recency plays a smaller but still significant
role.

6. Is there a threshold above which candidates can be accepted immediately?

83

Proximity: 12
Salience: 21
Both togethes: 10
Proximity: 12
Case-Role Persistence: 16
Both together: 1

Case-Role Persistence: 16
Salience: 21
Both together: 1

Figure 10-17: Upward Reweightings on Various Strategies

This does not appear to be the case, although it seems likely that there is a lower bound below
which a candidate can be completely discarded. Lack of such a bound in the current
implementation leads to some resolutions which succeed (with an erroneous result) rather
than invoking a recovery strategy to create new candidates.

7. Are any of the strategies correlated?
An accurate answer to this question is nmot available due to the sheer amount of data
involved--even for the relatively small test set used, 14710 vote pairs must be analyzed for
each pair of strategies for which correlation is to be computed. Some indication of
correlation can be obtained, however, by examining the reweighting behavior. In examining
Figure 10-17, it is clear that Proximity and Salience tend to be reweighted togetber, while
neither of the other two pairings show such a tendency.

The system was only tested on a single example drawn from a single genre and domain, but there is no
inherent dependence on genre or domain. Different genres of text would bave different styles which may
lead to different strategy weights, but will not require any modifications to the resoiver. Similarly, different
domains would require an expanded or modified ontology which covers the entities discussed in each new
domaiz, but no modification of MASTER-D proper. Therefore, MASTER-D should be effective across all
genres of writing and all domains.

85

Chapter 11

Contributions

The work described in this dissertation makes the following contributions:
1. It shows the applicability of the multistrategy approach to demonstrative references.

2. It produced a working demonstrative resolver, MASTER-D.
3. 1t shows the relative effectiveness of a variety of resolution and reweighting strategies.

4, The MASTER-D system is a flexible implementation of the multistrategy approach which
provides a test-bed for further research.

That the multistrategy approach is applicable to demonstrative references was shown by the results of the
MASTER-D tests in Sections 10.2 and 10.5. The multistrategy approach was able to resolve more than
twice as many demonstratives as a naive heuristic, and was further improved (by more than 10 percent)
with the addition of adaptive reweighting. These results also show that MASTER-D is a working
demonstrative resolver, and the relative effectiveness of multiple resolution and reweighting strategies.

As will be discussed more thoroughly in the next chapter, MASTER-D provides a flexible platform on
which to base further research. It can fairly easily be extended to provide additional coverage of
demonstratives, or modified to cover other linguistic phenomena such as pronominal anaphora. In either
case, the flexibility of the system allows for a variety of experiments to be performed, comparing various
approaches to determine the best one.

Even without the possible extensions mentioned in the next chapter, MASTER-D is a highiy flexible and

configurable system. Areas that may be customized at run-time include
1. Ordering of strategy applications

2. Substrategy handling

3. Threshold for selection of best candidates
4. Delay before reweighting begins

5. Reweighting method

6. Accuracy computation

7. Decay functions

86

87

Chapter 12

Possible Enhancements

This chapter covers some of the enhancements which could be made to the basic system. These
enhancements fall into the general classes of broadening coverage (to other iinguistic phenomena as well as
additional types of demonstratives) and improving accuracy. Coverage could be broadened to
intrasentential demonstratives; anaphoric pronouns and noun phrases; or idiomatic, metaphoric, and
epithetic demonstratives. Accuracy could be improved by additional strategies, better strategy weighting,
and leaming algorithms. Finally, speed can be greatly enhanced by parallelizing the application of
resolution strategies.

12.1. Intrasentential Demonstrative References

The current implementation of MASTER-D only treats intersentential demonstrative references, and does
not attempt to determine whether the actual referent lies in the same sentence as the demonstrative.
Handling intrasentential references would require changes to several parts of the system; at a minimum, the
candidate determiner and accessibility constraint strategy must be updated to deal with the additional
candidates available in the current sentence. The latter might use something similar to Reinhart’s
c-conmmand relation [37] to determine whether a candidcte in the current sentence could be referenced by
the demonstrative. The distance computation used by the Recency Preference strategy would also need to
be adjusted to allow for candidates to be in the same sentence as the demonstrative.

12.2. Anaphoric Pronouns and NPs

Since the basic mechanism and a number of the strategies will be applicable to anaphoric pronouns/NPs
as well as demonstratives, it should be fairly straightforwand to enhance the system to resolve anaphoric
references as well as demonstrative references. This would allow comparing/contrasting demonstrative and
anaphoric references. There is also the exciting prospect that the addition of anaphoric pronoun resolution
will have a synergistic effect by providing more information about candidate referents for demonstratives
and vice versa,

88

12.3. Additional Strategies

Due to the modular nature of the resolver, it will be possible to add new strategies by simply adding
another entry to the list of strategies to invoke (see Section 8.5 for details on adding strategies). The
strategies are assumed to be mutually independent; new strategies which satisfy this assumption will not
affect the operation of existing strategies other than by changing the relative weights of strategies.

Examples of such additional strategies include the treatment of idiomatic, metaphoric, and epithetic
demonstratives. Idiomatic demonstratives would require a database of idioms which include
demonstratives, and how the antecedent (if any) relates to the demonstrative. Metaphcric demonstratives
would require a metaphor-handling module. Epithetic demonstratives such as that bastard could he
handled with some form of user model showing the speaker’s attitudes and beliefs about the various entities
in the discourse, coupled with a knowledge base of the connotations of commonly-used epithets.

Better accuracy on demonstratives already covered by the resolver might be achieved by adapting
strategies such as Stock of Shared Knowledge [23] to demonstrative pronouns and NPs. Because the Stock
of Shared Knowledge approach uses multiple factors which must be individually weighted, it is possibie
that the system’s reweighting mechanism could be used to optimize those weights as well as the strategy
weights it already optimizes. One of the factors, Linear Distance, could be omitted when adding SSK to
MASTER-D, since distance is already present as the Recency Preference strategy.

12.4. Other Reweighting Methods

The reweighting methods described earlier are all fairly simplistic. A more sophisticated reweighting
method may lead to better or faster convergence in the strategy weights. Better optimization might also be
obtained by permitting multiple weights per strategy, with the appropriate weight selected by some
criterion.

For instance, one may globally reweight we strategies, rather than reweighting strategies individually.
The global reweighting can take into account the change in a strategy’s weight as a result of the rescaling
operation since it determines the new weigkts of all the other strategies at the same time.

Anotber more sophisticated reweighting method acts not only on the strategy weights, but also on the
decay functions and/or distance functions. For example, a particular strategy may be more effective than
expected for candidates which are lexically distant from the demonstrative, in which case it would be
desirable to reduce the effect of the decay function. This might be accomplished by reducing the "speed”
parameter to the decay function or even switching to another decay function. It might also be
accomplished by switching to a different distance function which reports a smaller distance, thus reducing
the effects of textual separation between the reference and candidate antecedents.

Multiple weights per strategy might be useful if the optimum weights differ for different types of
references or different positions of the demonstrative within a parse. For instance, subject demonstratives

89

might require different weights than object demonstratives. While it does not seem likely that there will be
a large variation in weights under different circumstances, even the small differences one would expect can
bave a significant impact on overall performance, making this a worthwhile course of investigation.

12.5. Learning

MASTER-D can already be said to contain a rudimentary form of machine learning in its automatic
reweighter, which implements a simple *‘learning by parameter optimization’* technique. It seems likely
that adding a more powerful learning algorithm will imprcve the system’s performance by ‘‘remembering”
the patterns in the input Leamning might take the form of chunking, as in the SOAR system, or
memoization.

Chunking should be able to improve performance by retrieving the relationship of the antecedent to the
demonstrative which was determined the previous time that an equivalent construction was encountered.
Memoization would be able to do the same thing provided that the memos are generalized prior to storage;
without the generalization step, memoization would only be effective when the identical input is
encountered again.

12.6. Parallelization

As was mentioned at the beginning of Chapter 3, the multistrategy approach offers easy parallelization.
Resolutions can be greatly speeded by processing candidates in parallel, in which case the bottleneck
becomes the speed at which the best score is selected. With sufficient processors (for example, on a
Comnection Machine), it would be possible to run not only candidates in parallel, but nm the resolution
strategies for each candidate in parallel as well.

The current serial implementation already contains some pseudo-parallelism in the form of the agenda
handler, which dispatches instances of the strategy applier one at a time. With multiple processors, the
agenda handler could activate multiple instances at once, such as in Figure 12-1. Ope processor executes
the agenda handler and demonstrative resolver (which primes the agenda and selects the best score on
completion of the agenda), while the remaining processors execute copies of the strategy applier.
Parallelizing the strategy applications for a single candidate would require additional but relatively minor
meodifications to the strategy applier; one approach would be to add ail of the strategy applications to the
agenda as individual items when a particular candidate initially reaches the head of the agenda.
Alternatively, if sufficient processors are available (for example, on a Connection Machine), the candidates
could be parceled out to a set of processors which in turn assign the individual strategy applications to other
processors and tally the results (see Figure 12-2).

Agenda Handler assigns
candidates to processors

Candidate 1

CPU1

Demonstrative Resolver
collects scores and
determines preferred

referent

Result

Figure 12-1: A Parallelized Implementation

91

1

CcPUQ
Assign ~ :
Strategies :
to CPU 1 H CPUN
Processors ; H
cPU CPU CPU ceens CPU CPU cPU
Strategy 1 Strategy 2 Strategy M Strategy 1 Strategy 2 Strategy M
Collect Scores
From Individual CPU1 . CPUN
Strategies ¢

Determine Candidate
with Highest Score

Result

- Figure 12-.2: A Massively Parallel Implementation

92

93

Appendix A
Annotated Trace

The resolution process is illustrated through a sequence of screen dumps showing the displays seen by the
user and an annotated version of the trace file produced during the resolution. Since a trace can easily
amount to several thousand lines per sentence when tracing is set to maximum verbosity, the trace file
shown here was created at level 7 of 30, and certain repetitive sections bave been elided. In addition,
portions of the trace have been reformatted to fit on the page and to improve the readability of the displayed

parses.

Figure A-5 shows the general layout of the screen. Menus and dialogs requesting input from the user are
shown in the upper left corner; in this figure, MASTER-D has detected that the file which is to contain the
resolved parses already exists and gives the user the option of overwriting the file or appending the new
output. The three windows in the center of the display are the optional monitoring windows. On the Icft,
the current accuracies and weights of the resolution strategies are displayed and updated after every
resolution. The upper right window displays the current item on the agenda, while the lower right window
displays the five candidates with the highest scores after each strategy application. Finally, the bottom line
of the display (not seen in Figure A-5 because it is blank, but shown in Figures A-2 and A-6, among others)
shows the system’s current processing state. This status line is acwally in reverse video, which could not
be reproduced here.

The trace and screen dumps in this appendix show the processing of a file containing parses for five
sentences (listed in Appendix D) containing a total of three demonstratives. The screen dumps illustrate
various points of interest from the loading of the system through compietion of processing on the file.

The first screen dump (Figure A-1) shows MASTER-D being loaded. No tracing output is generated
until after MASTER-D loads its configuration (Figure A-2) and has been set up by the user (Figure A-3).

The trace begins with MASTER-D announcing that it is starting, and showing the initialization of various
components (which, if any, are reported in the trace file depends on the tracing level). As part of its
initialization for this example, it opens an output file to contain the resolved parses. Since the file already
exists, the user is prompted whether the file should be overwritten or have new data appended (Figure A-5).

b3+ 5+ 53 33 32+ 3 33 3 2 333 2 F 3 3 3 41 2+ F T+ P42 ¥ 3 1
MASTER-D started at 7:10:35 on 5-07-1993
Trace Level 7

{init-correctness)
(init-statistics)

; Loading stuff from #<Stream for file */usrl/ralf/src/md/master-d.lisp”>.

; The FrameKit Knowledge Representation System

FrameKit 2.0 (01-Feb-88) Copyright (c¢) 1985, 1988
;;: Carnegie Mellon University - All Rights Reserved

;7: Stripped-down version for MASTER-D by Ralf Brown, 1993..

P R S N O S T R e R R T T T S Y PN OO pu

it +
it MASTER-D +
i+ Multiple Adaptively-weighted STratEgies for +
pia+ Resolving Demonstratives +
Pt {(version 1.03, 4/29/93) +
i+ +
RS by Ralf Brown +
it N
;;i+ Copyright (c) 1993 Ralf Brown. All Rights Reserved +
;i t +
HEFE T TR PR R R TR R R R S I eI Y

7:; [loading from /usr/ralf/src/md/}

o e .
I

Figure A-1: Loading MASTER-D

[loading settings from demo.cfg}

Figure A-2: MASTER-D loading its configuration

95

Change MASTER-D settings from their defaults?

{Y/N} ([N]

Figure A-3: Opportunity to change setttings

100.0
100.0

0.0
100.0
100.0
100.0
100.0
100.0
100.0

—===Regolution Strategy Weights

100%
100%
100%
100%
100%
100%
100%
100%
100%

Local Constraints
Case-Role Constraints
Accessible Referents
Reference Type
World-Model Constraints
Proximity

Recency

Case-Role Persistence
Salience

.

Agenda Itepms

. <no agenda executing> .

Top Candidates

. <no candidates> .

Figure A-4: MASTER-D initialized and starting

96

s

The output file exists.

Append new

output to it?

(Y/N} Y]

i00.cC
100.0

6.0
100.
100.
100.
100.
100.
100.

COOOO0O

Resclution Strategy Weight

100%
100%
100%
100%
100%
100%
100%
100%
100%

Tocal Constraints
Case-Role Constraints
Accessible Referents
Reference Type
World-Model Constraints
Proximity

Recency

Case-Role Persistence
Salience

Agenda Itemr

. <no agenda ex--uting> .

=Top Candidates

. <no candidates> .

Figure A-5: Option to overwrite existing output file

100.0
100.

0.
100.
i100.
100.
100.0
100.0
100.0

0
0
0
0
0

p===Resolution Strategy Weights=

100%
100%
100%
100%
100%
100%
100%
100%
100%

Local Constraints
Case-Role Constraints
Accessible Referents
Reference Type
World-Model Constraints
Proximity

Recency

Case-Role Persistence
Salience

Agenda Iterm

. <no agenda executing> .

Canonicalizing....

=Top Candidate

. <no candidates> . .

Figure A-6: Canonicalizing the first parse

97

p====Resolution Strategy Weights

100.0 100% Local Constraints

100.0 100% Case-Role Constraints .
0.0 100% Accessible Referents

Agenda Jtem

. <no agenda executing> .

100.0 100% Reference Type

100.0 100% World-Model Constraints
100.0 100% Proximity

100.0 100% Recency

100.0 100% Case-Role Persistence
100.0 100% Salience

=Top Candidates

. <no candidates> .

Processing "The comment is made in this document ’'Against UI Copyright‘:*

Figure A-7: Processing the first sentence

Verification
MASTER-D has selected
<<<nothing>>>
as the referent for the demonstrative
Demonstrative <this document>
in the sentence

Is this correct?
==> Yes / No [Yes]

The comment is made in this document ’‘Against UI Copyright’:

— e e

=——==Resolution Strategy Weight
100.0 100% Local Constraints

100.0 100% Case-Role Constraints
0.0 100% Accessible Referents
100.0 100% Reference Type

-

. <no agenda executing> .

Agenda Item

100.0 100% Proximity
100.0 100% Recency ..
100.0 100% Case-Role Persistence
100.0 100% Salience

Q
Q
0
100.0 100% World-Model Constraints
0
(o}

.

=Top Candidat es=—=mme=mna

. <no candidates> .

Updating internal data...

1]

Figure A-8: Verifying first resolution

98

(init-agenda)
(init-corpus)
(init-candidate-pool)
{init-ontoloqy)
(load-ontology "md.ont*)
(init-world-model)
{init-discourse-model)
(init-reweighting)
(init-generator)

Figure A-5 is displayed at this point
(init-parser)
(open-parse-£file */usr/ralf/src/md/test.parses"®)
(load-corpus NIL)

Next, we begin processing the first sentence by reading the parse from the data file and canonicalizing it

into MASTER-D’s internal representation:
(get-parse-from-file) --> (*MAKE
{TENSE PAST)
{ THEME
(*O~COMMENT
(NUMBER SINGULAR)
(REFERENCE DEFINITE)})
{LOCATION
{ *DOCUMENT
{REFERENCE DEMONSTRATIVE)
(NUMBER SINGULAR)
(DISTANCE NEAR)
(NAME *"Against UI Copyright®)
(INPUT *this document®)))
(SENTENCE
*The comment is made in this document
‘Against UI Copyright :*)
(SATTRIBUTES
{PARA 34)
(SPEAKER *Frank Ingari®})))
{(get-parse) --> "The comment is made in this document
‘Against Ul Copyright’:" [PARSE-1]
>>> processing >>> "The comment is made in this document
'‘Against UI Copyright’:*
{canonicalize (*MAKE
{(TENSE PAST)
(THEME
{*O-COMMENT
(NUMBER SINGULAR)
(REFERENCE DEFINITE)))
(LOCATION
{* DOCUMENT
{(REFERENCE DEMONSTRATIVE)
(NUMBER SINGULAR)
{DISTANCE NEAR)
(NAME ®Against UI Copyright*®)
{(INPUT "this document”)))
(SENTENCE
*The comment is made in this document
‘Against UI Copyright’:")
{SATTRIBUTES
(PARA 34)
(SPEAKER *Frank Ingari®)}))
Figure A-6 is displayed at this point

(canonicalize-ILT~embedded)

Canonicalized parse is:

{ROLE36
{ PARENT-SLOT LOCATION)
(PARENT-FRAME PROPOSITION33)
{$ID TAG37)
{INPUT *this docurent®)
(NAME *®Against UI Ceoyright*)
({DISTANCE NEAR)
(NUMBER SINGULAR)
(REFERENCE DEMONSTRATIVE)
{PROPOSITION PROPOSITION33)
(IS-A *DOCUMENT)
(FRAME~-MAKER MASTER-D)

)

(ROLE34
(PARENT-SLOT THEME)
{ PARENT-FRAME PROPOSITION33)
{$ID TAG35)
(REFERENCE DEFINITE)
(NUMBER SINGULAR)
(PROPOSITION PROPOSITION33)
(IS-A *O-COMMENT)
(FRAME-MAKER MASTER-~D}

}

(PROPOSITION33
(SID TAG38)
(SATTRIBUTES (PARA 34) (SPEAKER *Frank Ingari®*))
{SENTENCE
*The comment is made in this document

‘Against UI Copyright’:*)

(LOCATION ROLE3S6)
{THEME ROLE34)
(TENSE PAST)
(PROPOSITION PROPOSITION33)
(IS-A *MAKE)
{FRAME-MAKER MASTER-D)

)

{canonicalize ...}
~-> PROPOSITION33

After canonicalization, MASTER-D scans the parse for demonstratives and finds ROLE36. It passes this
to the demonstrative resolver, which on this first sentence has no candidates (the global candidate for the
speaker Frank Ingari is not added until after the sentence is processed because this information was not
available before reading the first parse). Since there are no candidates, there is no suitable candidate

antecedent, and thus MASTER-D initiates the recovery strategies.
(master~d-resolver-main PARSE-1l), 1 unresolved
*** resolving PARSE-1/ROLE36 ***
(resolve-demonstrative ROLE36 NIL)
{run-entire-agenda), 0 items on agenda
Figure A-7 is displayed at this point
(best-candidates {RESOL-2 ROLE36 0 0)}} --> NIL
(initiate-recovery0 RESOL-2)
applying recovery strategy "Extralinguistic Reference*
new candidates: NIL
applying recovery strategy °*Metonyms®
new candidates: NIL
applying recovery strategy "Relax Constraints®
new candidates: NIL
{initiate-recovery0 RESOL-2) exit

Since there were no previous sentences processed, and no candidates were added by the recovery

100

strategies, MASTER-D selects NIL (i.e. no referent) as the desired antecedent. The next step is to ask the

user to verify that the selection is correct (Figure A-8).
(verify-resolution *“The comment is made in this document ‘Against UI
Copyright’:* PROPOSITION33 ROLE36 ...)
(verify-resclution ... ROLE36) --> T

After each resolution is complete and verified, the strategies are reweighted, and then rescaled so that the
total of the weight’s absolute values remains constant. Once the strategies have been normalized, any
outdated information about how strategies voted is deleted. When the strategy weight window is enabled,
as it is for this example, the display is also updated at this time (Figure A-9). In this case, the strategy
weights and accuracies remain unchanged because the first resolution effectively did not occur--there were
no candidates and the correct candidate was not in the candidate pool. Due to an interaction between this
situation and adjustments which are made to avoid penalizing strategies for demonstratives which are
beyond the scope of the system, the strategy accuracies will appear to be greater than 100 percent later in
this example.

Since there were no candidates on which to vote, the strategies were never applied and will thus not be
reweighted for this demonstrative. Thus, reweighting, rescaling, and voting-history adjustments are
skipped this time.

The final phase of processing a parse is to update the candidate pool. This occurs in two steps: removal
of candidates which have become too old to be considered potential antecedents, followed by addition of
candidates made available by the parse which was just processed. In this case, no candidates are purged
since there are none in the pool, and five new candidates (ROLE34, GLOBAL3S, LEXICALA4O0,

LEXICAL41, DISCOURSE42) are added.

{resolve-demonstrative ROLE36 ...) --> (NIL)

*** completing resolution of PARSE-1 ®*»

Referents found: {(ROLE3é . NIL))

(update-candidate-pool PROPOSITION33 ...)
{purge-~candidate-pool) --> 0 candidates remaining
{nouns-in-parse PROPOSITION33) --> (ROLE34)
{propositions-in-parse PROPOSITION33) --> NIL
{properties-in-parse PROPOSITION33) --> NIL
{lexical-candidates-in-parse PROPOSITION33) --> {(LEXICAL41 LEXICAL40)
{discourse-candidates-in-parse PROPOSITION33) --> (DISCOURSE42)
(update-candidate-pool PROPOSITION33 ...) done, 5 candidates

When creating a trace file, performance statistics are generated after this final step of processing. These
statistics show how long the resolution took and the updated weights of the resolution strategies. In
addition to the strategy weights, a summary of reweighting and the computed accuracy for each strategy are
shown. The reweighting summary indicates how many times the strategy’s weight was increased or
decreased. For this sentence, the computed accuracy is -99.99 percent because the strategies have never
been applied; in later statistics, some of the strategies remain at -99.99 percent because they have never
given an opinion on any candidates, and thus their correctness scores are 0 points out of a possible 0 points.
The rescaling factor shown at the end of the statistics indicates how much the weights had to be rescaled to
keep the total constant, and is the product of the individual rescaling factors applied. An individual
rescaling factor is the amount by which the strategy weights were multiplied to return the sum of weights to
its original value.

101

<<< processing complete <<«
CPU time used: 2.48 seconds
Elapsed -zime: 7.87 seconds

Performance Summary

Sentence Number 1
1 demonstrative
ROLE36 {Demonstrative <this document>)
~--> NIL (<<<nothing>>>)

Initial Current Reweights

Strategy Weight Weight Up/Down Accuracy
Local Constraints 100.000 100.000 0/ 0 -99,85%%
Case-Role Constraints 100.000 100.000 0/ 0 -99.99%
Accessible Referents 0.000 0.000 0/ 0 -99.99%
R:{=2rence Type 100.000 100.000 0/ 0 -99.99%
World-Model Constraints 100.000 100.000 0/ 0 -99.99%
Proxinmity 100.000 100.000 0/ 0 -99.49%
Recency 100.000 100.000 o/ 0 -99.99%
Case-Role Persistence 106C.200 100.000 0/ 0 -99.99%
Salience 100.000 100.000 0/ ¢] -99.99%

TSR INTTSSITTR==SS

MASTER-D can now feed the processed parse to the generator or output file. Note the additional slot

REFERENT under LOCATION in the processed parse, indicating that there was no referent in the prior text.
(generate (*MAKE
(TENSE PAST)
{THEME
{*O~-COMMENT
(NUMBER SINGULAK)
(REFERENCE DEFINITE)
{$ID TAG35)}))
(LOCATION
{ *DOCUMENT
(REFERENCE DEMONSTRATIVE)
{NUMBER SINGULAR)
(DISTANCE NEAR}
{NAME °*Against UI Copyright*)
(INPUT "this document®)
($ID TAG37)
(REFERENT NIL)))
{ SENTENCE
*The comment is made in this document ‘Against UI Copyright’:")
{$ID TAG38)))
{generating to file #<Stream for file */usrl/ralf/src/md/md.output*>)

The second senence is processed in much the same way, but does not trigger resolution as it contains no
demonstratives (Figure A-10). Therefore, the processing steps are retrieving the parse from the data file,
canonicalizing it updating the candidate pool, and sioring the parse in the output file.

102

====Resolution Strategy Weights: Agenda Itemem
100.0 100% Local Constraints
100.0 100% Case-Role Constraints <no agenda executing>
0.0 100% Accessible Referents
100.0 100% Reference Type
100.0 100% World-Model Constraints *Top Candidat egwes
100.0 100% Proximity
100.0 100% Recency <no candidates>
100.0 100% Case-Role Persistence
100.0 100% Salience
!

Converting result for generation....

Figure A-9: Strategies Reweighted

remzRegolution Strategy Weights Agenda Item
100.0 100% Local Constraints
100.0 100% Case-Role Constraints .+ . . . <no agenda executing> . .

0.0 100% Accessible Referents
100.0 100% Reference Type

100.0 100% World-Mcdel Constraints Top Candidates
100.0 100% Proximity
100.0 100% Recency . . « . . . <no candidates> .

100.0 100% Case-Role Persistence
100.0 100% Salience

Processing ®*Copyright on a user interface means a government-imposed monopoly o

Figure A-10: Processing second sentence

103

(get-parse-from-file) --> (*MEAN
{TENSE PRESENT)
{NUMBER SINGULAR)
{(THEME
{*O~COPYRIGHT
{NUMBER SINGULAR)
(REFERENCE DEFINITE)
{OBJECT
(*USER-INTERFACE
{REFERENCE INDEFINITE
(NUMBER SINGULAR}))
{ INPUT
copyright on a user interface®}))
(OBJECT
{ *MONCPOLY
(NUMBER SINGULAR)
{REFERENCE INDEFINITE)
{CREATOR *GOVERNMENT)
{OBJECT
{*USE-OF-THING
{(REFERENCE POSSESSIVE}
(PERSON 3)
{NUMBER SINGULAR)
(ROOT *its use*)})
{INPUT
*a government-imposed moncopoly on its use®}}}
{SENTENCE
"Copyright on a user interface means a
government-imposed monopoly on its use.®)
{SATTRIBUTES (PARA 35)})
(get-parse) --> °*Copyright on a user interface means a government-imposed
monopoly on its use.® [PARSE-3)
>>> processing >>> *Copyright on a user interface means a government-impcsed
monopoly on its use."
Canonicalized parse is:
(ROLE49
(PARENT-SLOT OBJECT)
{ PARENT-FRAME ROLE48)
($ID TAGS0)
(ROOT *its use'")
(NUMBER SINGULAR)
{PERSON 3)
(REFERENCE POSSESSIVE)
(PROPOSITION PROPOSITION43)
(IS-A *USE-OF-THING)
(FRAME-MAKER MASTER-D)
)
{ROLE48
{ PARENT-SLOT OBJECT)
{ PARENT-FRAME PROPOSITION43)
($ID TAGS1)
{INPUT *a government-imposed monopoly on its use®)
{OBJECT ROLE49)
{CREATOR *GOVERNMENT)
{REFERENCE INDEFINITE)
(*AMBER SINGULAR)
. “OPOSITION PROPOSITION43)
{IS~-A *MONOPOLY)
(FRAME-MAKER MASTER-D)

104

{ROLE45
(PARENT-SLOT OBJECT)
{PARENT-FRAME ROLE44)
{SID TAG46)
{(NUMBER SINGULAR}
{REFERENCE INDEFINITE)
{PROPOSITION PROPOSITION43)
(IS~A *USER-INTERFACE)
(FRAME-MAKER MASTER-D)

)

{ROLE44
{ PARENT-SLOT THEME)
(PARENT-FRAME PROPOSITION43)
($ID TAG47)
(INPUT *copyright on a user interface®)
(OBJECT ROLE4S)
(REFERENCE DEFINITE)
(NUMBER SINGULAR)
{PROPOSITION PROPOSITION43)
(IS-A *Q-COPYRIGHT)
(FRAME-MAKER MASTER-D)

)
(PROPOSI'IION43

($ID TAGS52)

{SATTRIBUTES (PARA 35))

{(SENTENCE

*Copyright on a user interface means a government-imposed monopoly on

its use.")

{OBJECT ROLE4S8)

(THEME ROLE44)

(NUMBER SINGULAR)

(TENSE PRESENT)

(PROPOSITION PROPOSITION43)

(IS-A *MEAN)

(FRAME-MAKER MASTER-D)
)
{canonicalize ...)

--> PROPOSITION43
(master-d-resolver-main PARSE-3), 0 unresolved
*** completing resolution of PARSE-3 t*»
{update-candidate-pool PROPOSITION43 ...)
{purge-candidate-pool) --> 5 candidates remaining
(nouns-in-parse PROPOSITION43) --> (ROLE44 ROLE48 ROLE4S ROLE4Y)
(propositions-in-parse PROPOSITION43) --> (PROPOSS3)
(properties-in-parse PROPOSITION43} --> NIL
(lexical-candidates-in-parse PROPOSITION43) --> (LEXICALS?

LEXICALSE
LEXICALSS
LEXICALS4)
(discourse-candidates-in-parse PROPOSITION43) --> (DISCOURSESS)
(update-candidate-pool PROPCSITION43 ...) done, 15 candidates
<<« processing complete <<«
CPU time usged: 1.81 seconds
Elapsed time: 1.95 seconds

Performance Summary
-+ + s+ + 1+ 2 1+ 3 2 3+ 5+ ¢ 13-4
Sentence Number 2
0 demonstratives

105

Initial Current Reweights

Strategy Weight Weight Up/Down Accuracy
Local Constraints 100.000 100.000 0/ 0 -99.99%
Case-Role Constraints 100.000 100.000 0/ 0 -99.99%
Accessible Referents 0.000 0.000 0/ 0 -99.99%
Reference Type 100.000 100.000 0/ 0 -99.99%
World-Model Constraints 100.000 100.000 o/ 0 ~99.99%
Proximity 100.000 100.000 o/ o] ~-99.99%
Recency 100.000 100.000 o/ 0 -99.99%
Case-Role Persistence 100.000 100.000 Q/ 0 -99.99%
Salience 100.000 100.000 0/ 0 ~-59.99%

e - S e v " " " - = = S = = o A B = - e A e e

Total Rescaling Factor: 1.00

(generate (*MEAN
{TENSE PRESENT)
(NUMBER SINGULAR)
(THEME
(*O-COPYRIGHT
{NUMBER SINGULAR}
(REFERENCE DEFINITE)
(OBJECT
(*USER~INTERFACE
(REFERENCE INDEFINITE)
(NUMBER SINGULAR)
($ID TAG46€)))
(INPUT "copyright on a user interface")
(SID TAG47)})
{OBJECT
{ *MONOPOLY
(NUMBER SINGULAR)
(REFERENCE INDEFINITE)
(CREATOR *GOVERNMENT)
({OBJECT
(*USE-OF-THING
{REFERENCE POSSESSIVE)
{PERSON 3)
{NUMBER SINGULAR)
{ROOT *"its use")
{$ID TAGSO0)))
(INPUT *a government-imposed monopoly on its use")
{$ID TAG51)))
{SENTENCE
*Copyright on a user interface means a government-imposed
monopoly on its use.")
($ID TAG52)))
[generating to file #<Stream for file "/usrl/ralf/src/md/md.output*>}

The third sentence becomes interesting, as there are now several candidates in the candidate pool and a
demonstrative to be resolved. Again, processing begins by reading the parse and canonicalizing it

>>> processing >>> "This would mean that each typewriter manufacturer
would be forced to arrance the keys differently.®

Canonicalized parse is:
(ROLE68

{ PARENT-SLOT OBJECT)

(PARENT-FRAME ROLE67)

($ID TAG69)

(INPUT *keys"®)

(REFERENCE DEFINITE)

{NUMBER PLURAL)

(PROPOSITION PROPOSITIONS9)

(IS-A *KEY)

{FRAME-MAKER MASTER-D)

106

Reference Type of Demonstrative
<this>

. Object

Preoperty

Event

Action

Time

Location

Logical Predicate/Proposition
Discourse Reference

Lexical Reference
Extralinguistic

Cataphoric Reference
Non-Literal Reference
Quantifier/Selector
Placeholder

Comparison

Epithet

. None of the Above

Choose items, press Enter when done

1o
vVvy

RATMBHOAWPOVOIANE WN

mmemmree——meeAgenda It

nc STRATEGY-APPLIER

iority 25.00

g (EVALREC-6 ROLE60 DISCOURSESS}

aemesm———en'Top Candidates
25.00 DiscRef <Copyright on a user
0.00 SPEAKER Frank Ingari
0.00 *0-COMMENT
0.00 *this document*
0.00 "The comment is made in this

Processing "This would mean that each typewriter manufacturer would be forced t

Figure A-11: Asking user for reference type in third sentence

Reference Type of Demonstrative
<this>
1. Object
2. Property
3. Event
4. Action
5. Time
6. Location
-> 7. Logical Predicate/Proposition
8. Discourse Reference
9. Lexical Reference
A. Extralinguistic
B. Cataphoric Reference
C. Non-Literal Reference
D. Quantifier/Selector
E. Placeholder
F. Comparison
G. Epithet
H. None of the Above
Choose itemg, press Enter when done

Agenda Item
nc STRATEGY-APPLIER
iority 25.00

g {EVALREC-6 ROLE60 DISCOURSESS)

Top Candidates
25.00 DiscRef <Copyright on a user
0.00 SPEAKER Frank Ingari
0.00 *O-COMMENT
0.00 "this document*
0.00 °"The comment is made in this

Processing "This would mean that each typewriter manufacturer would be forced t

Figure A-12: User selected reference type

107

—===Resolution Strategy Weights Agenda Iten=
100.0 100% Local Constraints Func STRATEGY-APPLIER-PREF ‘
100.0 100% Case-Role Constraints Priority 200.00
0.0 100% Accessible Referents Arg {EVALREC-11 ROLE60 PROPOS53}
100.0 100% Reference Type
100.0 100% World-Model Constraints «Top Candidatesms
100.0 100% Proximity 125.00 Logical <Copyright on a user
100.0 100% Recency 0.00 SPEAKER Frank Ingari
100.0 100% Case-Role Persistence . 0.00 *O-COMMENT
100.0 100% Salience 0.00 *this document®
— 0.00 °*The comment is made in this

Processing *This would mean that each typewriter manufacturer would be forced t

Figure A-13: Processing third sentence

{ROLE67
(PARENT-SLOT ACTION)
(PARENT-FRAME ROLE62)
($1D TAG70Q)
{INPUT *arrange the keys differently®)
(MANNER *DIFFERENTLY)
(OBJECT RCOLE68)
{PROPOSITION PROPOSITIONS9)
({IS-A *ARRANGE)
{FRAME-MAKER MASTER-D)

)

(ROLES4
(PARENT-SLOT OBJECT}
{PARENT-FRAME ROLE63)
($ID TAG6S)
(INPUT *typewriter®)
(NUMBER SINGULAR)
(REFERENCE INDEFINITE)
(PROPOSITION PROPOSITIONS9)
(IS-A *TYPEWRITER}
{FRAME-MAKER MASTER-D)

108

(ROLE63
(PARENT-SLOT THEME)
{ PARENT-FRAME ROLE62)
(SID TAGES6)
(INPUT *"each typewriter manufacturer®)
(OBJECT RCLE64)
(REFERENCE INDEFINITE)
{(NUMBER SINGULAR)
(PROPOSITION PROPOSITIONSS)
(IS-A *MANUFACTURER)
(FRAME-MAKER MASTER-D)

)

{ROLE62
(PARENT-SLOT OBJECT)
{PARENT-FRAME PROPOSITIONSSI)
{$ID TAG71)
{INPUT
*each typewriter manufacturer would be forced to arrange

the keys differently*)

{ACTION ROLE67)
{(THEME ROLE63)
(MODALITY WOULD)
(TENSE PRESENT)
{PROPOSITION PROPOSITIONS9)
(IS-A *PORCE-ACTION)
(FRAME-MAKER MASTER-D)

)

{ROLE6O
(PARENT-SLOT THEME)
{PARENT-FRAME PROPOSITIONS9)
($ID TAGE1)
(ROOT *this*)
{DISTANCE NEAR)
(NUMBER SINGULAR)
(PROPOSITION PROPOSITIONS9)
(IS-A *DEMONSTRATIVE*)
{FRAME-MAKER MASTER-D)

)
{PROPOSITIONS9
($ID TAG72)
(SATTRIBUTES (PARA 35})
{SENTENCE
*This would mean that each typewriter manufacturer would be forced
to arrange the keys differently.*)
{OBJECT ROLE62)
(THEME ROLE60)
(MODALITY WOULD)
(TENSE PRESENT)
(PROPOSITION PROPOSITIONSS)
(IS~-A *MEAN)
(FRAME-MAKER MASTER~D)

Having determined that ROLE160 is a demonstrative, MASTER-D invokes the demonstrative resolver

with this demonstrative and a list of the candidate referents.
{master-d-resolver-main PARSE-4), 1 unresolved
*+x regolving PARSE-4/ROLE60 ***
{resolve-demonstrative ROLE60 (DISCOURSESS LEXICALS54

LEXICALSS LEXICALS56
LEXICALS? PROPOSS3
ROLE4S ROLE4S
ROLE48 ROLE44
DISCOURSE42 LEXICAL40
LEXICAL41 ROLE34
GLOBAL39))

109

The demonstrative resolver, in turn, queues an instance of the strategy applier for each candidate referent,
and then invokes the agenda handler 1o process the strategy applier instances. For this example, the agenda
handler ordered execution by current total score; as a result of the positive score by the first strategy, the
first candidate to be processed continues processing until its score becomes negative. The two values
shown as the return values of the apply-strategy function are the raw score returned by the strategy

and the adjusted score (including any decay function).

{run-entire-agenda), 15 items on agenda

(strategy-applier {[EVALREC-6 ROLE60 DISCOURSES8)}) start

{(apply-substrategies ROLE60 DISCOURSES8) --> 0.25

(apply-strategy *"Local Constraints® ({EVALREC-6 ROLE60 DISCOURSES8})
--> 0.25 [0.25]

(strategy-applier EVALREC-6) --> {(:REQUEUE 25.0)

(strategy-applier {(EVALREC-6 ROLE60 DISCOURSES8}) start

(apply-strategy “Case-Role Constraints® {EVALREC-6 ROLE&0 DISCOURSESS})
--> 0.0 [0.0}

(strategy-applier EVALREC-6) --> (:REQUEUE 25.0)

(strategy-applier (EVALREC-6 ROLE&0 DISCOURSES8)) start

(apply-strategy "Accessible Referents® {EVALREC-6 ROLE60Q DISCOURSESS8})
--> 0.0 [0.0]

(strategy-applier EVALREC-6} --> (:REQUEUE 25.0)

(strategy-applier {EVALREC-6é ROLE60 DISCOURSES8}) start

(apply-strategy "Reference Type® {EVALREC-6 ROLE60 DISCOURSES58})
--> INVALID (-1000000}

(strategy-applier EVALREC-6) --> (:REQUEUE -999$75.0)

Now that the score is negative, DISCOURSESS is no longer the candidate with the highest priority, so the
next candidate is processed. Again, the initial positive score keeps the candidate at the head of the queue

until its score becomes negative.

(strategy-applier {EVALREC-7 ROLE&0 LEXICALS54)}) start

(apply-substrategies ROLE60 LEXICALS54) --> 0.25

{apply-strategy *Local Constraints*® {EVALREC-7 ROLE60 LEXICALS4}}
--> 0.25 [0.25)]

(strategy-applier EVALREC-7) --> (:REQUEUE 25.0)

(strategy-applier {EVALREC-7 ROLE60 LEXICALS54}) start

(apply-strategy ®Case-Role Constraints" (EVALREC-7 ROLE60 LEXICALS4})
~-> 0.0 [0.0)

(strategy-applier EVALREC-7) --> (:REQUEUE 25.0)

(strategy-~applier {EVALREC-7 ROLE60 LEXICALS54}) start

(apply-strategy "Accessible Referents® {EVALREC-7 ROLE60 LEXICALS54)})
--> 0.0 [0.0]

(strategy-applier EVALREC-7) --> (:REQUEUE 25.0)

(strategy-applier {EVALREC-7 ROLE60 LEXICALS4)}) start

{apply-strategy °*Reference Type® {EVALREC-7 ROLE60 LEXICALS54}}
--> INVALID (~1000000]

(strategy-applier EVALREC-7) --> (:REQUEUE -999975.0)

Now the third candidate referent moves to the bead of the agenda, and processing continues similarly for
another 40 lines of the trace, until a candidate passes the Reference Type constraint. This candidate,

PROPOSS3, remains at the head of the agenda until it has been completely processed.
(strategy-applier {EVALREC-11 ROLE6Q PROPOSS3}) start
(apply-substrategies ROLE6Q PROPQSS53) --> 0.25
(apply-strategy ®"Local Constraints* {EVALREC-11 ROLE60 PROPOS53}}
-~> 0.25 [0.25}

(strategy-applier EVALREC-11) --> (:REQUEUE 25.0)

(strategy-applier {EVALREC-11 ROLE60 PROPOSS3}) start

(apply-strategy "Case-Role Constraints*® (EVALREC-11 ROLE60 PROPOSS53})
-~-> 0.0 [0.0]

{strategy-applier EVALREC-11) --> (:REQUEUE 25.0)

110

{strategy-applier {EVALREC-11 ROLE60 PROPOS53}) start

{apply-strategy ‘Accessible Referents* {EVALREC-11 ROLE60 PROPOSS3})
--> 0.0 [0.0]

{strategy-applier EVALREC-11) ~-> (:REQUEUE 25.0)

(strategy-applier {EVALREC-11 ROLE60 PROPOS53)) start

(apply-strategy "Reference Type*" (EVALREC~11 ROLE60 PROPOSS53})
--> 1.0 [1.0]

(strategy-applier EVALREC-11) --> {(:REQUEUE 125.0)

(strategy-applier (EVALREC-11 ROLE60 PROPOSS53}) start

{apply-strategy *World-Model Constraints® {EVALREC-11 ROLE60 PROP0SS3})
--> 0.0 {0.0]

{strategy-applier EVALREC-11) --> {:REQUEUE 125.0)

(strategy-applier {EVALREC-11 ROLE60 PROPOSS3}) start

{(apply-strategy °*Proximity®" {EVALREC-11 ROLE60 PROPOS53})
-=-> 0.0 [0.0]

(strategy-applier EVALREC-11) --> PENDING

(apply-strategy °"Recency® {EVALREC-11 ROLE60 PROPOSS3}) --> 1.0 {0.75]

(apply-strategy "Case-Role Persistence® (EVALREC-11 ROLE60 PROPOSS3})
--> 0.0 [0.0]

(apply-substrategies ROLE60 PROP0OSS53) --> 0.0

(apply-strategy "Salience* {EVALREC-11 ROLE60 PROPOSS3}) --> 0.0 [(0.0})

Processing continues similarly for all the other candidates, producing an additional 258 lines of trace data.

After the candidates have been processed, the strategy applier determines the highest score and the
threshold value above which candidates will be accepted (for this trace, the threshold is 98% of the highest
score or 195.9998). Only a single candidate (PROPOSS53) is accepted for this sentence, and it is returned
as the referent of the demoustrative.

{best-candidates), hiscore = 195.9998
{EVALREC-6 ROLE60 DISCOURSESS8), score = ~999900.0

{EVALREC-7 ROLE60 LEXICALE4}, score = -999900.0
{EVALREC-8 ROLE60 LEXICAL5S5}, score = -999900.0
{EVALREC-9 ROLE60 LEXICAL56}, score = -999900.0

{EVALREC-10 ROLE60 LEXLCALS7}, score = -999900.0
{EVALREC-11 ROLE60 PROPOS53}, score = 200.0

{EVALREC-12 ROLE6Q ROLE49}, score = -3899900.0
{EVALREC-13 ROLE60 ROLE45}, score = -9995900.0
{EVALREC-14 ROLE60 ROLE4B}, score = -999900.0
{EVALREC-15 ROLE60 ROLE44}, score = -999825.0

{EVALREC-16 ROLE60 DISCOURSE42}, score = -1000050.0
{EVALREC-17 ROLE60 LEXICAL40}, score = -1000050.0
{EVALREC-18 ROLE60 LEXICAL41}, score = -1000050.0
{EVALREC-19 ROLE60 ROLE34}, score = -1000050.0
{EVALREC~20 RCLE60 GLOBAL39), score = -999950.0
{best-candidates (RESOL~5 ROLE60 15 15}} --> ({EVALREC-11 ROLEé0O PROPOSS53}}

The system now performs its verification and update steps. First, the user is queried whether the selected

referent is in fact the correct antecedent. The strategies are then reweighted and normalized, outdated votes
are removed from the voting history, and the candidate pool is updated.

(verify-resolution *This would mean that each typewriter manufacturer would
be forced to arrange the keys differently.*
PROPOSITIONSS ROLE6O ...}

(verify-resolution ... ROLEEO) --> T

(strategy-reweighter {RESQL-5 ROLE60 15 15})

(rescale-gtrategies) --> scaled by factor of 0.914286

(purge-voting-history) done

{purge-voting-history) done

(strategy-reweighter {(RESOL-5 ROLE60 1S 15}) done

(resolve-demonstrative ROLE6D ...) --> ({EVALREC-11 ROLE60 PROPOS53})

*** completing resolution of PARSE-4 *+**

Referents found: ((ROLE60 . PROPOS53))

(update-candidate-pool PROPOSITIONSS ...)

111

Resolution Strategy Weights ==Agenda Itenr
100.0 100% Local Constraints Func STRATEGY-APPLIER-PREF
100.0 100% Case-Role Constraints Priority -999975.00

0.0 100% Accessible Referents Arg {EVALREC-12 ROLE60 ROLEA49}
100.0 100% Reference Type e
100.0 100% World-Model Constraints Top Candidates
100.0 100% Proximity 200.00 Logical <Copyright on a user
100.0 100% Recency -999900.00 DiscRef <Copyright on a user
100.0 100% Case-Role Persistence ~999900.00 °*Copyright on a user interfac
100.0 100% Salience -999900.00 *copyright on a user interfac

===============1:2?9900.00 *a government-imposed monopol

Processing "This would mean that each typewriter manufacturer would be forced

Figure A-14: Processing nearing completion

MASTER-D has selected
Logical <Copyright on a user interface means a government-imposed
monopoly on its use.>

as the referent for the demonstrative
Demonstrative <this>

in the sentence

*This would mean that each typewriter manufacturer would be forced to

arrange the keys differently.*

Is this correct?

==> Yes / No [Yes] ¢

Verification

e —
100.0 100% Case-Role Constraints .+« +« « . <no agenda executing> . . .
0.0 100% Accessible Referents

100.0 100% Reference Type

100.0 100% World-Model Constraints Top Candidat esz===—m==r—=—m=x

100.0 100% Proximity 200.00 Logical <Copyright on a user

100.0 100% Recency ~-999825.00 copyright on a user interface

100.0 100% Case-Role Persistence §-999900.00 DiscRef <Copyright on a user

100.0 100% salience -999900.00 "Copyright on a user interfac
g m:§99900.00 *copyright on a user interfac

e e e

Updating internal data....

Figure A-15: Verifying second resolution

112

mezResolution Strategy Weights Agenda Item=
114.3 7% Local Constraints
91.4 100% Case-Role Constraints « .« . . . <no agenda executing> .
0.0 100% Accessible Referents
114.3 100% Reference Type B
91.4 100% World-Model Constraints =Top Candidates
91.4 100% Proximity
114.3 100% Recency « « « « . . <no candidates>
91.4 50% Case-Role Persistence
91.4 100% Salience
e o — ————

Updating internal data....

Figure A-16: Reweighting strategies

FmmResolution Strategy Weights= Agenda Itemns=
114.3 7% Local Constraints
91.4 100% Case-Role Constraints « + . + . <no agenda executing> . .
0.0 100% Accessible Referents
114.3 100% Reference Type
91.4 100% World-Model Constraints Top Candidates==——=cxmmmmm—
91.4 100% Proximity
114.3 100% Recency .+« « « . . <no candidates> .
91.4 50% Case-Role Persistence
91.4 100% Salience
R
— ———————_——————

Converting result for generation....

Figure A-17: Storing resolved parse

113

{purge-candidate-pool)
{purge-candidate-pool) --> 15 candidates remaining
(nouns-in-parse PROPOSITION59) --> (PROPOSS53$73
ROLE62
ROLE63
ROLE64
ROLE68)
{(propositions-in-parse PROPOSITIONS9) --> (PROPOS75 PROPOS74)
(properties-in-parse PROPOSITIONSY9} --»> NIL
{lexical-candidates-in-parse PROPOSITIONS9) --> (LEXICALS2
LEXICALS1
LEXICALSO
LEXICAL79
LEXICAL78
LEXICAL77
LEXICAL7S)
{discourse-candidates-in-parse PROPOSITIONSS) --> (DISCOURSES83)
(update-candidate-pocl PROPOSITIONSY ...) done, 29 candidates

As with the first two sentences, a statistics display is generated and the final parse is transformed into the
format required by the generator and stored in the output file. Note the : REFERENCES slot under THEME.
This shows that the frame now filling the THEME slot is the unification of the named frames, ROLE60 and

PROPOSS53.
<<< processing complete <<«
CPU time used: 48.11 seconds
Elapsed time: 88.94 seconds

Performance Summary

Sentence Number 3
" 1 demonstrative
ROLE60 {Demonstrative <this>)
--> PROPOSS53 (Logical <Copyright on a user interface means a
government-imposed monopoly on its use.>)

Initial Current Reweights

Strategy Weight Weight Up/Down Accuracy
Local Constraints 100.000 114.286 1/ 0 6.67%
Case~Role Constraints 100.000 891.428 o/ 0 -99.99%
Accessible Referents 0.000 0.000 0/ 0 -99.99%
Reference Type 100.000 114.286 1/ o} 100.00%
World-Model Constraints 100.000 91.428 o/ 0 -99.99%
Proximity 100.000 91.428 o/ Q -99,99%
Recency 100.000 114.286 1/ 0 100.00%
Case-Role Persistence 100.000 91.428 o/ 0 50.00%
Salience 100.000 91.428 o/ 0 -99.99%

SErTssssssSSsSS==IIns

{(generate (*MEAN
{TENSE PRESENT)
(MODALITY WOULD)
(THEME
(*PROPOSITION*
{LOGICAL~-PROP PROPOSITION43)
{($ID TAGé1l)
(ROOT *this®)
{DISTANCE NEAR)
(NUMBER SINGULAR)
(:REFERENCES
{PROPOSITIONS9 THEME ROLE60)
{NIL NIL PROPOSS53)}))

114

(OBJECT
{*FORCE-ACTION
(TENSE PRESENT)
(MODALITY WOULD)
(THEME
{ *MANUFACTURER
{NUMBER SINGULAR}
{REFERENCE INDEFINITE)
{OBJECT
(*TYPEWRITER
{REFERENCE INDEFINITE)
{NUMBER SINGULAR)
(INPUT “typewriter®)
($ID TAG65)))
{INPUT *each typewriter manufacturer®)
(SID TAGé6)))
(ACTION
(*ARRANGE
(OBJECT
{*KEY
{(NUMBER PLURAL}
{REFERENCE DEFINITE)
{INPUT "keys®)
{(SID TAG69)})
(MANNER *DIFFERENTLY)
{INPUT "arrange the keys differently")
($ID TAG70}))
(INPUT
*each typewriter manufacturer would be forced to arrange
the keys differently®*)
($ID TAG71)))
(SENTENCE
*This would mean that each typewriter mcnufacturer would e
forced to arrange the keys differently.®)
($ID TAG72)))
[generating to file #<Stream for file */usrl/ralf/src/md/md.output®>}

The final two sentences are processed similarly, producing approximatety 1100 lines of tracing
information. Sentence 4 does not contain a demonstrative, while Sentence 5 does. Figures A-18 through
A-24 show various stages in processing the fifth sentence. In this case, MASTER-D carnot determine a
unique best candidate, so it asks the user to select among the two best candidates in Figure A-24. Since the
fifth sentence is the last parse in the data file, MASTER-D allows the user to choose what action to take
next (Figure A-25), which may include invoking the main command menu (Figure A-26).

When MASTER-D is shut down (Figure A-27), it outputs final statistics to the trace file. For the example
shown in this appendix, the following summary is written to the trace file. Execution times were gathered
using the Lisp functions get-internal-run-time and get-internal-real-time, which have
a granularity of 0.01 seconds on the system used. As a result, there can be minor discrepancies such as real
time being slightly less than CPU time on the more-quickly executing functions. The total time is
computed using a separate timer rather than summing the different phases, and thus does not exactly equal
the sum of the other values.

Following the display of execution times, the final strategy weights are shown, along with a summary of
reweighting actions and the computed accuracy.

115

Resolution Strategy Weights Agenda Item
114.3 7% Local Constraints
91.4 100% Case-Role Constraints <no agenda executing> .

0.0 100% Accessible Referents

114.3 100% Reference Type

91.4 100% World-Model Constraints Top Candidate
91.4 100% Proximity
114.3 100% Recency . « « « . . <no candidates> . . .
91.4 50% Case-Role Persistence
91.4 100% Salience

Processing *Of course those should be open.*

Figure A-18: Beginning processing of fifth sentence

Reference Type of Demonstrative
<those>

. Object
Property
Event

. Action
Time

. Location

P

. Logical Predicate/Proposition Agenda Items=
Discourse Reference nc STRATEGY-APPLIER

Lexical Referr..ce iority 28.57

Extralinguiscic g {EVALREC-254 ROLE96 ROLE87}

-

Cataphoric Reference

Non-~Literal Reference Top Candidates
. Quantifier/Selector 28.57 tools
Placeholder 0.00 SPEAKER Frank Ingari
Comparison 0.00 *O-COMMENT

Epithet 0.00 *this document*

. None of the Above 0.00 *The comment is made in this

NOQTMEBUANPORSaUs W R

Choose items, press Enter when done

Processing "Of course those should be open.*

Figure A-19: Asking user for reference type

116

[—————
Reference Type of Demonstrative
<those>

->

OAMPUOT P ODINWSWN R

.

. Object

Property

. Event

. Action

. Time

. Location

Logical Predicate/Proposition
Discourse Reference
Lexical Reference
Extralinguistic
Cataphoric Reference
Non-Literal Reference
Quantifier/Selector
Placeholder
Comparison

Epithet

None of the Above

Choose iters, press Enter when done

e

Agenda Itenr

nc STRATEGY-APPLIER
iority 28.57
g {(EVALREC-254 ROLE96 ROLES87}

fj wemne—Top Candidates
28.57
0.00
0.00
0.00
0.00

tools

SPEAKER Frank Ingari
*O-COMMENT

this document®

*The comment is made in this

Processing *Of course those should be open.*

Figure A-20: User selected reference type

g====Resolution Strategy Weights Agenda Item
114.3 7% Local Constraints Func STRATEGY-APPLIER
91.4 100% Case-Role Constraints Priority 142.86
0.0 100% Accessible Referents Arg (EVALREC-254 ROLE96 ROLES87)
114.3 100% Reference Type
91.4 100% World-Model Constraints Top Candidates
91.4 100% Proximity 142.86 tools
114.3 100% Recency 0.00 SPEAKER Frank Ingari
91.4 50% Case-Role Persistence 0.00 *O-COMMENT
91.4 100% Salience 0.00 *"this document*
0.00 *The comment is made in this
Processing *0Of course those should be open.*
Figure A-21: Applying strategies

117

4
0
3
4
.4
3
4
4

3

mm=Resolution Strategy Weights
114.
91.

7%

Local Constraints
Case-Role Constraints
Accessible Referents
Reference Type
World-Model Constraints
Proximity

Recency

Case-Role Persistence
Salience

=s=Agenda It

Func STRATEGY-APPLIER

Priority 0.00

Arg (EVALREC-267 ROLE96 ROLE64)}
e

Top Candidatess

tools

the letters of the alphabet
keys

SPEAKER Frank Ingari
*O-COMMENT

228.57
228.57
57.14
0.00

0.00

Processing *0Of course those should be open.*®

Figure A-22: Processing continues

3
4
0
3
4
4
3
4
4

==Resolution Strategy Weights
114.
91.

0.
114.
91.
91.
114.
91.
91.

7%
100%
100%
100%
100%
100%
100%

50%
100%

Local Constraints
Case-Role Constraints
Accessible Referents
Reference Type
World-Model Constraints
Proximity

Recency

Case-Role Persistence
Salience

Agenda Itemss

Func STRATEGY~-APPLIER

Priority -1000000.00

Arg {EVALREC-280 ROLE96 DISCOURSEA42}

Do p Candidates
228.57 tools
228.57 the letters of the alphabet
57.14 keys
~999970.00 each typewriter manufacturer

;-999970.00 typewriter

Processing "Of course those should be open.*

Figure A-23: Processing nearing completion

118

o

To what does Demonstrative
<those> refer?

e

1. the letters of the alphabet
2. tools
3. None of the above
Enter choice:

114.3 7% Local Constraints

91.4 100% Case-Role Constraints . e e
0.0 100% Accessible Referents

114.3 100% Reference Type

91.4 100% World-Model Constraints

91.4 100% Proximity 228.

114.3 100% Recency 228
91.4 ©50% Case-Role Persistence 57
91.4 100% Salience -999913

e e - 099970 .

====Resolution Strategy Weights==gjwmresccem===Agenda It

. <no agenda executing> . .

A

57
.57
.14
.00
00

Top Candidates
tools

the letters of the alphabet
keys

SPEAKER Frank Ingari

each typewriter manufacturer

Processing "0Of course those should be open.*

Figure A-24: Asking user to disambiguate

There are no more parses remaining in
the parse file.
1. Load Parser
2. Read Another Parse File
3. Show Command Menu

4. Quit

Enter choice:

End of File

What next?

129.0
82.6

0.0
129.0
82.6
82.6
129.0
I 82.6

82.6

==m=Resgolution Strategy Weights

53%
100%
100%
100%
100%
100%
100%

50%

50%

Local Constraints
Case-Role Constraints e e e
Accessible Referents

==spgenda Iterm

. <no agenda executing> . .

Reference Type

World-Model Constraintsfz=————zms====Trop Candidates

Proximity

Recency e e .
Case-Role Persistence

Salience

. <no candidates>

E===w —

-

Figure A-25: End of parse file reached

119

em====MASTER~D Commands=======
1. Parse Sentence from Corpus
2. Use Parse from Corpus

3. Clear Candidate Pool

4. Reset Text Context

5. Load Strategy Weights

6. Save Strategy Weights

7. Save Current Configuration
8. Evaluate a LISP Expression
19. Quit MASTER-D

#Enter choice: S Agenda Itenr

82.6 100% Case-Role Constraints <no agenda executing> . . .
0.0 100% Accessible Referents
129.0 100% Reference Type

82.6 100% World-Model Constraints Top Candidates
82.6 100% Proximity
129.0 100% Recency .+ <no candidates>

82.6 50% Case-Role Persistence
82.6 50% Salience
e

Figure A-26: MASTER-D Command Menu

MASTER-D shut down
T

*

Figure A-27: MASTER-D shut down

120

(get-parse-from-file) --> :QUIT
{get-parse) --> QUIT
{shutdown) invoked
{shutdown-parser)
(shutdown~generator)
(shutdown-reweighting)
(shutdown-agenda)
{shutdown-world-model)
{shutdown-ontology)
{shutdown-discourse-model)
{shutdown-statistics)

Final Summary of Performance

PR P o 2 e et

Sentences Processed: 5
Demonstratives: 3 (1 nonreferential)
Candidates Processed: 49 (avg 16.33 per demonstrative)

Correctness Cccurrences
————————— #-----’—---_---_—----~-‘----.—.‘-----w—‘——--“-—-’-———

1 1** (2)

1/2 1* (1)

_________ e e e

Phase Real Time CPU time Calls
Parser Interface 2.65 sec 2.36 sec 14
Generator Interface 5.63 sec 5.03 sec 7
Canonicalization 5.03 sec 5.04 sec 12
Reweighting 0.68 sec 0.52 sec 4
Agenda/Cand Display 60.72 sec 60.29 sec 1489
Strategy Application 17.78 sec 18.33 sec 459
Recovery Strategies 0.15 sec 0.11 sec 2
Resolution Overhead 15.57 sec 15.09 sec 3
World Model 0.72 sec 0.35 sec 59
ontology 8.38 sec 8.17 sec 32
Candidate Management 1.34 sec 1.28 sec 12
Corpus Access 0.03 sec 0.02 sec 1
Garbage Collection 0.00 sec 0.00 sec 0
User Interface 198.37 sec 56.86 sec 1023
Other 7.75 sec 3.90 sec 1

Total 325.02 sec 177.42 sec
Initial Final Reweights

Strategy Weight Weight Up/Down Accuracy
Local Constraints 100.000 129.032 2/ 0 53.33%
Case-Role Constraints 100.000 82.581 0/ 0 -99.99%
Accessible Referents 0.000 0.000 o/ 0 ~-99.99%
Reference Type 100.000 129.032 2/ 0 100.00%
World-Model Constraints 100.000 82.581 0/ 0 -99.99%
Proximity 100.000 82.581 0/ 0 100.00%
Recency 100.000 129.032 2/ 0 100.00%
Case-~Role Persistence 100.000 82.581 0/ 0 50.00%
Salience 100.000 82.581 0/ 0 50.00%

- — - " W - T L - " " e " - - AL - = g D 6 AL o -

Total Rescaling Factor: 0.83

£+ 3+ 331 P 3 24+t T 3t S 4t

(shutdown-correctness)
{shutdown-tracing)

P2 A S TS ettt st S S F St

Not surprisingly, displaying the current agenda item and top five candidates after every strategy
application uses considerable amounts of CPU time--the 60.29 seconds listed as "Agenda/Cand Display” as

121

well as most of the 56.86 seconds listed for "User Interface”. Creating the execution trace uses a majority
of the remaining CPU time, especially in strategy application and "Resolution Overhead™ (which includes
agenda bhandling, determining the best candidate, and updating strategy voting information).

For comparison, the following timing report is generated for the same set of seuntences when tracing
output is minimized and the debugging windows are disabled. This is the performance one would normally
experience in a production environment rather than the testing/debugging environment used in this
appendix. Further performance gains of five to ten percent can be achieved by entirely removing the
debugging and timing ccde. Note that most of the time under Ontology was used in loading the knowledge
base; a smaller knowledge base containing only the items required for these five parses would have
significantly reduced the overall processing time.

Phase Real Time CPU time Calls
Parser Interface 0.56 sec 0.54 sec 14
Generator Interface 2.96 sec 2.90 sec 7
Canonicalization 0.20 sec 0.24 sec 12
Reweighting 0.03 sec 0.03 sec 4
Strategy Application 2.96 sec 2.97 sec 459
Recovery Strategies 0.03 sec 0.03 sec 2
Resolution Overhead 1.28 sec 0.85 sec 3
World Model 0.30 sec 0.27 sec 59
Ontology 7.84 sec 7.75 sec 32
Candidate Management 0.83 sec 0.77 sec 12
Corpus Access 0.00 sec 0.00 sec 1
Garbage Collection 0.00 sec 0.00 sec 0
User Interface 20.82 sec 6.18 sec 38
Other 5.72 sec 3.49 sec 1

122

123

Appendix B
Selected Source Code

This appendix lists three of the core source modules of the MASTER-D system (amounting to
approximately one-ninth of the complete source code) in their entirety. The full source code is available
from the CMU Center for Machine Translation and by anonymous FTP o FTP.CS.CMUEDU in directory
/afs/cs/project/cmt/master~d/pub.

The first source module shown here is str-appl.lisp, the actual strategy application mechanism.
The second source module is reweight . 1isp, which contains the strategy reweighting functions. The
last module is strategies.lisp, which contains the top-level definitions of the resolution strategies.

B.1. Strategy Applier

".OQ'ﬂ..'ii.’.t‘t.'.‘tt...iﬁtt'I.'i"..'..'.'t'...'..t...‘....'t.'i..t.‘...tt

i:*

FX A MASTER-D

2:* {(Multiple Adaptively-weighted STratBEgies for Resolving Demonstratives)
[¥

:;* Plle: str-appl.lisp resolution-strategy applier

3:* Last Bdit: 27 Apr 93

F¥

3;* Copyright (c) 1993 Ralf Brown. All Rights Reserved.

3:* Permission granted for educational and non-commercial research uses.
3;* Other uses require prior permission by Ralf Brown or the CMU Center
;* for Machine Translation.

FX Ad
;;.Q..tt‘.ﬁ't't..'t't.tt*t.tti.ittttt'ttttttt..tt..tQt.t.Q.'.'tt."t.tttt'ttit

LR N R BN BN BN BN B R A N J

#1

Note: constraint and preference strategies return two values. The first 1is
the base score for the demonstrative/candidate pair, regardless of the distance
between them, and may be either ‘invalid or a number between -1.0 and +1.0,
inclusive. The second value is the distance attenuation, and is a list

whose first element is a function of two arguments, the first of which is the
base score and the second of which is the second slament of the returned list,
normally an attenuation factor.

Recovery strategies return a list of the candidates added (recovery0) or the
candidates still remaining (recovery2).
I .

3§ o o o it e e o s e T R T D > T T e A M e G - -~

;7 define constants used by this module

124

i3
{defconstant *empty-agenda-windowe®
*(#\Newline <no agenda executing» *
#\Newline " *))
{defconstant *empty-topcand-window*
‘{#\Newline *. <no candidates> *
#\Newline #\Newline #\Newlinpe

N

;: declare globals defined in other modules
I}

(defvar *default-constraint-strategies®)
{defvar *default-preferance-strateglies®)
{defvar *default-recovarylO-strategies?®)
{defvar *default-recovery2-strategiea®)
{defvar *constraint-strategies®)

{defvar *preference-strategies?)

{defvar *recoverylO-strategies?*)

(defvar *recoveryi-strategies?)

;; declare global variables used by this modulo
i

(defvar *strat-timer* nil)

{defvar *resol-timer* nil)

(defvar *recov-timer* nil)

(defvar *agenda-timer* nil)

(defvar *agenda-window* nil)

(defvar *top-cand-window* nil)

{defvar *current-candidates* nil)

3 e e e e e e - e o 0 L e e 8 e L 0 R S e e e s o

;5 Determine the relative priority to be given to the specified evaluation
;; record, which controls the order in which strategies arxre applied on
;1 demonstrative-candidate pairs.
35
(defun application-priority (eval-rec)
(case *prioritize-resolutions*
(nil 0.0)
(:strat (+ (length (evalrec-constraints eval-rec))
{length (evalrec-preferences eval-rec}))

)
(:score (evalrec-score eval-rec))
{t {evalrec-acores sval-rec))

)

PR AL D L e et Tl bt - Y - A e - - e - - -

;7 Determine the highest score among the given list of evaluation records
i
(defun highest-score (cands &aux hiscore)
(metf hiscore ~infinity)
{(Qolist {(ev cands)
{if (> (evalrec-score ev) hiscors)
{setf hiscore (evalrec-score ev)})
)
)
hiscore

125

J e o e e e e
33 Determine the best candidates for the specified resolution, which are
37 the candidate with the highest score and any others within a specified
;; threshold amount of that higheat score.
i3
(defun best-candidates (res &aux hiscore valid rasult)
(when (/= (resol-valid-candidates res) 0) ; leave result=x=NIL otherwise
(dolist (evalrec (resocl-eval-recs res))
(if (evalrec-valid evalrec) ; collect all the valid candidates
(push evalrec valid)
)
)
3
(setf hiscore (highest-score wvalid))
{1 (> hiscore 0)
{(setf hiscore (* hiscore *high-score-threshold*))
ielse
(inct hiscore (* hiscore (- 1 *high-score-threshold*)))
)
#-nodebug (mdtrace 7 *(best-candidates), biscore = ~S" hiscore)
{dolist (ev valid)
#-nodebug (mdtrace 4 " -8, score = ~8" ev (evalrec-score ev))
(if (>= (evalrec-score ev) hiscore)
(push ev result)
)
)
)
#~-nodebug (mdtrace 5 *(best-candidates ~S) --> ~8" res result)
result
)

e e e = s = T 9T W W T W D - - -

3+ Display the candidates which currently have the highest scores in
;7 a separate window on the screen.
¥
(defun Aisplay-top-candidates (&aux count body)
#-notimer (start-split-timer *agenda-timer*)
(setf *current-candidates* (sort *current-candidates* #'>
:key #’evalrec-score))
{setf count 0)
{dolist (cand *current-candidatest*)
{push (format nil "~10,2,,'-P ~29A* (evalrec-score cand)
{left-string (readable-name
{evalrec-candidate-ref cand)) 29)
}
body)
(inct count)
(12 (>= count *max-top-candidates*)
(return)
)
)
(if body
: force each item in the list to appear on a separate line
{setf body (interaperse {(nreverse body) #\Newline))
jelse
{setf body *ampty-topcand-window*)
)
(redisplay-window *top-cand-window* body)
#-notimer (stop-split-timer)

B) o e e e v R . e T s o T s T e s =

126

;s reset the liast of votes associated with each strategy for the current
:: resolution
i
{defun clear-strategy-votes (&rest strat-lists)
(dolist (strateglies strat-lists)
(dolist (strat strategles)
{setf (strategy-votes strat) nil) ; reset current-rescl vote list

;: add the votes for the current resolution to the overall voting history
;1; for each strategy
(defun update-voting-history (&rest strat-lists)
(dolist (strategles strat-lists)
(dolist (strat strategiles)
{when (strategy-votes strat)
{push (strategy-votes strat) (strategy-voting-history strat))
{inct (strategy-voting-hist-len strat)
(length (strategy-votes strat)))

i ————— - - - - - . T S W5 S P e - - - - - - - -

3+ Process a strategy which consists of multiple strategies. For each
3; of the substrategles, invoke the resclution function, and add up the
;7:; returned scores from all of the substrategles. Also add up the weights
;2 of all the strategies in order to scale the sum back down into the
;; proper range.
Y
(defun apply-substrategies (demonstrative candidate strat
&aux strats valid sum weight total-weight
score s vote)
#+debug (mdtrace 7 " (apply-substrategies ~S ~$ ~S)" demonstrative candidate
(strategy-name strat))
{setf strats (strategy-substrats strat))
(setf valid t sum 0.0 total-wseight 0.0)
(dolist (strat strats)
{let (score)
(setf score (funcall (strategy-func strat) demonstrative candidate))
(case Bcore
(invaliad (setf wvalid nil)
(setf s *score-invalide)
{if *sghort-circuit-eval*
{(return)
)
(t (setf welght (strategy-weight strat))
(setf s score)
(incf sum (* score weight))
(inct total-weight weight)
)
)
: record the substrategy’s vote
(satf vote (make-vote
tetrategy strat
1dem demonstrative

127

:candidate candidate
:digt-func (strategy-dist-func strat)
sdistance -1.0 ; we don’t know
tdecay-~-func {(strategy-decay-func strat)
1decay-8speed (strategy-decay-speed strat)
tdecays~to (strategy-decays-to strat)
1Taw-8C0OTe HTOYe
$18COre B
))
#+debug (intern-struct vota)
(push vote (strategy-votes strat))
)
)
(1f wvalia
(petf score (/ sum total-weight})
;else
(setf score ’invalid)
)
#-nodaebug (mdtrace 7 *(apply-substrategies ~§ ~8) --> ~S" damonstrative
candidate score)
(values score total-weight)

3 e o A e e v T D T - = T S R G o R A S T P S e = e AR M W " A - e o -

Process a single strategy.

H
defun apply-strategy (strat eval-rec
&aux dem candidate score s welight dist decay func
tot~weight vote)
#-notimer (start-split-timer *atrat-timer®*)
#+debug (mdtrace 7 "(apply-strategy ~-S ~8)" (strategy-name strat) eval-rec)
(setf dem (evalrec-demonstrative eval-rec))
(setf candidate (evalrec-candidate-ref eval-rec))
(1f *dligplay-top-candidates*
(digsplay-top-candidates)

;
;
}
(

)
(1£ (strategy-substrate strat)
(multiple-value-setqg (score tot-weight)
{(apply~substrategies dem candldate strat)
)
;else
(setf score {funcall (strategy-func strat) dem candidate))
)
(push (list strat score) {evalrec-gcores eval-rec))
(setf welght (strategy-weight strat))
(1f (and (= weight 0) tot-weight)
{setf weight tot-weight)

)
3
; determine the distance between demonstrative and candidate, and the
: value of the specified decay function for that distance
(setf dist (funcall (strategy-dist-func strat) dem candidate))
{setf decay (funcall (strategy-decay-func strat)
dist (strategy-decay-speed strat)))
H
;s adjust the raw score into a full score which is then added to the total

F
{cond
({(equal score ’‘invalid)
(setf ®» *score-invalidr)
(incf (evalrec-score eval-rec) s)

128

)
{t (setf func {(first decay))
(1f (consp func)
(setf func (eval func))
)
{(setf = (funcall func asccre ‘s.cond decay)))
; 414 the decay go dbeyond our preset limit?
(if (/= (signum (- score (strategy-dacays-to strat)))
{signum (- 8 (atrategy-decays-to strat)))
)
(setf » (strataegy-decaye-to strat))
)
(inct (evalrec-score eval-rez) (* s welight))
)

)
{wvhen (and (egqual score ’'invalid) (equal (evalrec-valid sval-rec) t))

(dect (resol-valid-candidates (evalrec-resol eval-rec)))
(setf (evalrec-valid eval-rec) ‘invalid)

)
H
; record the strategy's vote
5
(

setf vote {(make-vote
sstrategy strat
sdem dem
scandidate candidate
1dist-func (strategy-dist-func strat)
tdistance dist
sdecay-func (strategy-decay-func strat)
sdecay-speed (strategy-decay-speed ..rat}
tdecays-~-to (strategy-decays-to atrat)
1TAW-BCOY@ SJOre
tscore g
))

#+debug (intern-struct vote)

(push vote (strategy-votes strat))

(push vote (evalrec-votes eval-rec))

#+debug (mdtrace 25 "recorded vote ~8° vote)

s and finally return the resulting score

H
#-nodebug (mdtrace 6 “(apply-strategy ~8 ~S) ~-> ~8 [~8]°"
(strategy~name strat) eval-rec score s)
#-notimer (stop-split-timer)
score
)

PR Al D ittt D et et ————— -——————— Rttt bl d
;; Loop through the constraint strategies for a particular
;3 demonstrative-candidate pair.
3
{defun strategy-applier-const (eval-rec res &aux exitcode)
(declare (ignore res))
#+debug (mAtrace 8 *(strategy-appller-const EVALRRC-~D}*
{evalrec-id eval-rec))
(do ((conatralnt (evalrec-constraints eval-rec)
{evalrec-constraints eval-rec)))
{{or (not constraint) exitcede)) ; quit if no more ccastraints to apply
(setf constraint (first constraint))
(if (and *handle-substrats-individually* (etrategy-substrats constraint))
{(dolist (substrat (strategy-substrats constraint))
{(apply-strategy substrat eval-rec)

129

)
;else
{apply-strategy constraint eval-rec)
)
{pop {evalrec-constraints eval-rec))
{when (and *short-circuit-eval®
(equal (evalrec-valid eval-rec) ‘invalid))
#-nodebug (mdtrace 6 " (strategy-applier EVALREC-~D) short-circuited®
(evalrec-id eval-rec))
(setf exitcode ‘done)
)
{1f *interleave-resoclutions*
(setf exitcode (list :reqgueue {application-priority eval-rec)))
)
)
exitcode
}

:; ————————— L L X ¥) N O e) G TR D WP D WD N A S A WS G WD AR WD W S AR R S W P S D e e W A o e Ay s A wm o A
:: Loop through the preference strategies for a particular
i+ demonstrative-candidate pair.
i
(defun etrategy-appller-pref (eval-rec res &aux exitcode)
#+debug (mitrace 8 *{strategy-applier-pref EVALREC~~D)"
(evalrec-~1d4 eval-rec))
(do ((pref (evalrec-preferences eval-rec) (evalrec-preferences eval-rec)))
{(oxr (not »ref) exitc~de)) ; quit if no more preferences to apply
(setf pref (first pref))
{12 (and *handle-substrats-individually* (strategy-substrats pref))
{dolist (substrat (strategy-substrats pref))
(apply-strataegy substrat eval-rec)
)
;jelse
(apply-strataegy pref eval-rec)
)
(pop (evalrec-preferences eval-rec))
(when *interleave-resclutiona* : go to gleep and let ochers run
{queue-agenda-item (application-priority eval-rec)
'strategy-applier-pref eval-rec res)
(setf exitcode ’‘pending)
)
}
(1f exitcode
exitcode
;alse
‘done
}

R it et bl Dl it e n e .- m e - - - -
:; The actual application mechanism; an instance of this i1s added to the
:: main agenda for each damonstrative/candidate pair.

i3

;3 We loop through the list of constraints, applying each one in turn and
;: racording the resulte. After that, we do the same for prefersnces

32 (1f not thrown out, or told to do 80 by a global flag). When we

3: finish, we decrement a counter; once all instances for a given

1; demonstrative are done, a damon will fire and add a cleanup strategy
37 which will invoke the recovery strategies if necessary.

HY]

33 Unless told otherwise by a global flag, we go to sleep after each

;: strategy is applied so that all candidate. are processed roughly

130

;7 4in parallel.
33
{defun strategy-applier (eval-rec &aux exitcode res)
#-nodebug (mAtrace § *(strategy-applier ~8) start®” eval-rec)
{setf res (evalrec-resol eval-rac))
(setf exitcode (strategy-applier-const eval-rec res))
{1t (not exitcode)
(metf exitcode (strategy-applier-pref eval-rec res))
)
{(when (eqQ exitcode ’done)
(decf (resol-pending-evals res})
(push eval-rec *completely-processed-evals*)
)
#-nodebug (mdtrace € *(strategy-applier EVALREC--D) --> ~8¢
{evalrec-14 eval-rec) exitcode)

axitcode

~—

e e T

Recover the original frame if the specified frame ie & metonym; returns
the specified frame if it is not a metonym

;
i
H
H
d

o~ N we W N

efun un-metonym (item)
(1f (evalrec-p item)
(or (first (get-values (evalrec-candidate-ref item) ’‘metonym-for))
(evalrec-candidate-ref item))
;elme
(1f (frame-p item)
(or (first (get-values item 'metonym-for)) item)
jelse
item

3; The main demonstrative resolver.

;; ¥hat we want to do for esach damonstrative:
;7 For each candidate referent, apply constraints, preferances, and (if
1; needed) recovery strategies, keeping track of how each strategy
;7 voted. Once all candidates have been processed, pick out the most
;3 preferred as the referent, find out whether that choice was correct,
;3 and reweight the strategies accordingly.
:7 Note: the &koptional is a workaround for a compiler bug which causes
iz a runtime error if the desired ckey is used
HY
(defun resoclve-demonstrative (parse-rec denm candidates
&optional (constraints tdefault-constralnt-strategies*)
(prefarences *default-preference-strategies®)
{recovery0 *default-recoveryl-strategliest)
{(recovery2 *default-recovery2-strategies*)
(recursive nil)
&aux res eval-record num-candidates refs
)
(declare (ignore recursive))
#-notimer (etart-split-timer *resol-timer?)
{mdtrace 2 "(resoclve-demonstrative ~§ ~S)* dem candidates)
(metf *constraint-strategies* constraints
preference-strategies® preferences
racoveryl-strategies recovery?
*recoveryl-strategles® recoveryl)

131

{setf num-candidates (length candidates))

(setf res (make-resol :demonstrative dem
scandidates candidates
sadd-candidatas nil
spending-evals num-candidates
ivalid-candidates num-candidates
teval-racs nil
iconstraints constraints
iprefoerences preferences
trecovery-0 recoveryl
iraecovery-2 recove.y2

})

#+debug (intern-struct res)

(dolist {cand candidataes)

{satf eval-record (make-evalrec :resol res
tdemonstrative dem
icandidate-ref cand
sconstraints constraints
ipreferences preferences
1scores nil
iscore 0.0
ivalida t
1

(push eval-record (resol-eval-recs res))

#+debug (intern-struct eval-record)

(queue-agenda-item (application-priority eval-record)

‘strategy-applier eval-record)

}

(if *display-top-candidates*

(setf *current-candidates®* {copy-list (resol-eval-recs res)))

run-entire-agenda) t f£ire off evaluations until done

)
(
H
; after all the candidates have been processed, we want to check whether
; a unique referent is left. 1If not, initiate recovery actions. Also
: initiate recovery 1f even the best candidate was rules ocut by the
3 constraints
i
{setf (resol-best-cand res) (best-candidates res))
{cond
{(or (null (resocl-best-cand res))
(< (highest-score (resol-best-cand res)) *score-invalide*))
(initiate-recovery(0 res)
)
((zest (resol-best-cand res)) : multiple candidates remaining?
(initiate~recovery2 res)
)
)
’
: now that we have invoked the recovery strategiee (if applicable), also
;3 trigger the reweighting mechanism

H
(show-status "Updating internal data....")
(setf refs (resocl-best-cand res))
(setf (resol-referent res) (if (consp refs)
(un-metonym {(first refs))
{un-metonym refs)
N
(update-voting-history constraints preferences)
(determine-resolution-correctness parse-rec res dem)
{clear-strategy-votes constraints preferences)
{if candidates 3 4id we run any normal strategles?

132

(strategy-reweighter rees)
)
(when *display-top-candidatea*
{setf *current-~candidates* nil)
(display-top-candidates)
)
{mdtrace 2 "(xesolve-demconstrative ~8 ...) ~-> ~8* dem rafe)
#-notimer (stop-split-timer)
res
)

£ 2 D D N T A W T A R T R R MR e e R A S ME 5 L M AR W TR TR R M D s W e e W

e
;2 Invoke the priming function (if present) of each strategy so that it
;: can update the stratagy’s view of the world before sach parse is
;; processed.
i3
(defun prime-strategy-data-aux (strategles parse-rec)
(dolist (strategy strategles)
{(if (strategy-priming-func strategy)
(funcall (strategy-priming-func strategy) strategy parse-rec)
)
(dolist (substrat (strategy-substrats strategy))
(1f (strategy-priming-func substrat)
(funcall (strategy-priming-func substrat) substrat parse-rec)

(defun prime~-strategy-data (parse-rec)
({prime-strategy-data-aux *constraint-strategies® parse-rec)
(prime-strategy-data-aux *preference-strategies* parse-rec)
(prime-strategy-data-aux *recoveryl-strategies®* parse-rec)
(prime-strategy-data-aux *recovery2-strategies* parse-rec)
t

)

P AL L L S Ll e DL D L b et Ll D e DL D Pl bbb L bl bl X

1 Invoke the update function (if present) of each strategy so that it
:; can update the strategy’s view of the world after each parse has been
37 processed.
i
(defun update-strategy-data~-aux (strategies parse-rec)
{dollist (strategy strategies)
(1 (strategy-update~func strategy)
{funcall (strategy-update-func stratagy) strategy parse-rec)
)
(dolist (substrat (strategy-substrats strategy))
(if (strategy-update-func substrat)
{funcall (strategy-update-func substrat) substrat parse-rec)

(Qefun update-strategy-data (parse-rec)
(update-strategy-data-aux *constraint-strategies® parse-rec)
{(update-strategy-data-aux *preference-strategies® parse-rec)
{updats-strategy-data-aux *recovery(-strategies*®* parse-rec)
{update-strategy~data-aux *recoveryi-strategies® parse-rec)

133

)

P e e e e R e e e e e e e e e e e L e e m S — S m sk s L e
33 fire up the strategies with which to expand the space of candidate
;3 referente. In most cases, the strategles will recursively invoke
3+ the standard resolution mechanism to apply the normal constraints
;; and preferences.
i:
{defun initiate-recovery0® (res &aux new-cands result)
#-notimar (start-split-timer *recov-timer+¥)
#-nodebug (mdtrace 3 "(initiate-recovery0 RESCL-~D)®" (resol-id res))
(Qolist (strat (resol-recovery-0 res))
#-nodebug (mdtrace 4 * applying recovery strategy ~S"
{strategy-name strat))
(1f *display-top-candidates*
(display-top-candidates)
}
(setf new-cands (funcall (strategy-func strat) res))
#-nodebug (mdtrace 5 * new candidates: ~S8° new-cands)
(dolist (cand new-cands)
{push cand (resol-add-candidates res))
{push cand (resol-candidates res))

)
(1f (pot (consp result})
{setf result (list raesult})
H
{setf (rescl-best-cand res) result)
#-nodebug (mdtrace 3 “(ipitiate-recovery0d RESOL--D) exit® (resol-id res))
#-potimer (stop-aplit-timer)
result

#7 fire up the strategles with which teo further restrict the set of
;3 candidate referents. Stop as soon as a single candidate remaine.
3z
(defun initiate-recovery2 (res &aux remaining)
#-notimer (start-sgplit-timer *recov-timert*)
#-nodebug (mdtrace 3 *{initiate-recovery2 RESOL~D)* (rescl-id res))
{dolist (strat (resol-recovery-2 res))
#-nodebug (mdtrace 4 " applying recovery strategy -~S*
(strategy-name strat))
(if *display-top-candidates*
{display-top-candidates)
)
(sotf remaining (funcall (strategy-func strat) res))
(1f (not (consp remaining))
(setf remaining (list remaining))
)
#-nodebug (mdtrace 5 * remaining: ~S8* remaining)}
{setf (resol-best-cand res) remaining)
(i1f (= (length remaining) 1)
(returm)
}
)
#-nodebug (mdtrace 3 "(initiate-recovery2 RESOL-~D) exit" (resol-iQ& res))
#-notimer (stop-split-timer)

3+ This function is called by the agenda handler just before it invckes
;7 an agenda item’s function. The strategy applier uses this hook to
;1 dlsplay each strategy application as it occurs.
3
(defun agenda-pre-hook (priority func args)
#-notimer (start-split-timer *agenda-timer*)
(redisplay-window *agenda-window*
(list (format nil *"Punc ~35A" func)
#\Nawline
{format nil *Priority ~,2P* priority)
#\Newline
(left-string (format nil "Arg ~A" (first args)) 40)
))
#-notimer (stop-split-timer)
t
}

jj-—~emesvevncccc== bbbt Db bt et D LA DL S Dl et DL DO L L P LR
;: This function is called by the agenda handlor Just after it invokes
i3 an agenda item’s function. The strategy applier uses this hook to
;3 erase the agenda display window once all strategy applications have
;: been completed.
i3
(defun agenda-post-hook (func args retval)

(declare (ignore args retval))

#-notimer (start-split-timer *agenda-timer?)

(12 (null tunc)

{redisplay-window *agenda-window* *ampty-agenda-window®)
)
#-notimer (stop-split-timer)

;3 Perform all initializations needed to prepare the strategy applier
33 for use.
i
(defun init-strategy-applier ()
#-nodebug (mdtrace 9 "(init-strategy-applier)")
#-notimer (setf *resol-timer* (create-split-timer “Resolution Overhead"
nil))
#-notimer (setf *recov-timer* (create-split-timer "Recovery Strategies®
ail))
#-notimer (setf *strat-timer* (create-split~timer *"Strategy Application*
ail))
#-notimer
(1f (or *display-agenda* *digplay-top-candidates®)
{(setf *agenda-timer* (create-split-timer “"Agenda/Cand Display” nil))

)
F
¢ initialize the agenda display if the user requested it
H
{

when *display-agenda*
{sst-agenda-hooks #’agenda-pre-hook #’'agenda-post-hook)
(setf *agenda-window*
(display-help-window *agenda-window-pos* *eupty-agenda-window*
"Agenda Itenm*
3}
)
;
;7 initialize the Aisplay of the top candidates if the user requested it

135

!
(if *display-top-candidates®*
(setf *top-cand-window* (display-help-window *top-cand-window-pos*
*enmpty-topcand-window®
"Top Candidates”))

R e semmm—- mmeeemw el L D e tatntatede Dl D LSS Lt L L
:: Parform all cleanup reguired by the strategy applier before termination.
iz
(defun gshutdown-strategy-applier ()

#-nodedug (mdtrace 9 *"(shutdown-strategy-applier)™)

(remove-help-window *agenda-window*)

(remove-help-window *top-cand-window*)

t
)

';...'Q.Q&%ki..“.Q..t.tﬁ*‘ttli‘.t'ti..ttt..ﬁttt*tﬁ'..it.ﬁ.t".i'it'i't'

;: end of £file str-appl.lisp

',"..C".'.t't...'.Ot"i.'.tt...ii.ii.it.i"..t....ﬁ...."."-.t"tt..'

136

B.2. Strategy Reweighting Mechanism

;;..QGQOQO‘Q'..0t"‘t"ttt"t.t*.tQ.'t..i.#..Ci.t't'.'t"t'."'."t..'"Qtt'..

Y A

i * MASTER-D

P ¥ (Multiple Adaptively-weighted STratBgles for Resolving Demonstratives)

.;.

33* Plile: reweight.lisp resclution-strategy reweighting

:;* Last BAit: 6 May 93

i:*

::®* Copyright (c) 1993 Ralf Brown. All Rights Reserved.

:;* Permission granted for educatiocnal and non-commercial research uses.
;:* Other uses require prior permission by Ralf Brown or the CMU Center

::* for Machine Translation.

'y
s

> % & % % % 0SS % B

F¥ (222222 A A Al R d il A dd i A2 d X R 2adX 12222222222 X2X22 22X 12222 221222227}

Note: The reweighting code assumes a number of things about the decay
functions in decay.lisp:
1. the functions are monotonically nonincreasing with increasing
distance (for a fixed decay speed).
2. the functions are monotonically nonincreasing with increasing
decay speed (for a fixed distance).
3. a decay speed of 0 results in a constant function (i.e.
waight is independent of dlstance)

N N % Ne N e & W
N e Ny e W W Ny W

[A et D D il Dt me——eee- e em——————— Terresscdcc e e
;; Declare the global variables for this module

3

{defvar *reweight-timer* nil)

(defvar *gtrat-weight-window* nil)

;;--------Ooo ----- Y - N TR D SR WS GRS D A TS D WP D R e A P D R A D W D W G
:3 Include experimental reweighting code

i:

(load "md:reweighx™)

Pl Rt e D D e it remcemane. eecocoew e e LR O L D bt
:: Return a list containing the items to be displayed in the strategy
;: welght window on the screen.
H¥
{defun build-gtrat-weight-display (&aux result)
(dolist (c *constraint-strategles*)
(push (format nil *~6,1,,’*F -3D% ~A" (strategy-weight c)
(round {strategy-accuracy c))
(strategy-name ¢))
result)
)
{(dolist (p *preference-strategles*)
(push (format nil "~6,1,,’*F ~3D% ~A" (strategy-weight p)
(round (strategy-accuracy p))
(strataegy-name p))
Tosult)
)
(intersperse (nreverse result) #\Newline)

"-—-—o ————————————————————————— P S AD R G A S W A Y i A e e W D M WS WD R G A WA R AN D W D A WS
;: Determine the two highest scores among the listed votes
i:

137

(defun highest-scores {(votes &aux hiscore second)
(setf hiscore -infinity)
(setf second -infinity)
(dolist (vote votes)
(i€ (> (vote~-score vote) hiscore)
{setf bhiscore (vote-score vote))
;else
{1f (> (vote-score vote) second)
{(setf second (vote-score vote))
)
)
)
{values hiscore second)

7 Given the list of votes a resolution strategy made for a particular
;: demonstrative, determine whether it voted correctly
32
(defun correct-vote {(votes &aux score higcore second correct-vote correct-p)
(multiple-value-saetg (hiscore second) (highest-scores votes))
3
; store the highest score in all vote records
{(dolist (vote votes)
(setf (vote-best-weight vote) hiscore)
(setf (vote-second-best vote) second)

determine whether the candidate deemed correct got the highest score

. N N

(setf correct-vote (vote-correct-vote (firet votes)))
(1f correct-vote
{setf score (vote-score correct-vote))
jelse
(setf score hiscore) ; assume this is correct vote
)
(1f (eq score 'invalid)
(setf score most-negative-£ixnum)
)
(setf correct-p (eql score hiscore))
#+dedbug (mdtrace 12 " (correct-vote ~8) --> ~8*" (vote-dem (first votes))
correct-p)
correct-p

17 determine the percentage of the time that the strategy voted correctly
33
(defun hit-rate (strat &aux (corraect 0) rate)
{dolist (dem (strategy-voting-history strat))
(1f (or (null dem) (correct-vote (rest dem)))
{incf correct)
)
)
(setf rate (percentage correct (length (strategy-voting-history strat))
100.0))
#+debug (mdtrace 11 *(hit-rate -8) ~--> ~8" (strategy-name strat) rata)
rate

)

B e m e At e . - o = e e S L L S R A o o

138

73 The simplest reweighting strategy: aseign a new weight based on the
;; percentage of times that the strategy has voted accurately in the past.
i:
(defun welight-by-accuracy (strat &aux new-waight)
H
; return a weight between minus one-half the default weight and the
; full default weight
3
{setf new-waeight (* *default-strategy-weight®*
{/ (~ (strategy-accuracy strat) 20) 80)}))
3 (accuracy - 20) / 60 --> ~0.25..1.0
#+debug (mdtrace 10 *(weight-by-accuracy -S8) --> ~§ (delta ~8)*
(strategy-name strat) new-weight
(- new-weight (strategy-weight strat}))
new-weight

jym=——- e e e bl s————— e e s e e —— .- ———— mreseeeea-
:; Another simple reweighting strategy: make an incremental adjustment

; depending on whether the strategy voted corractly for the current
resolution. The incremental adjustment decreases as the number of
campleted resolutions increases. The rescaling which is done after each
rewelghting ensures that the weighta of highly-accurate strategies do not
grow without bound.

The first time the strategy is reweighted, its weight is adjusted up or
down by *initial-incremental-change® percent; thereafter, that initial
increment is divided by the number of previous reweightings performed on
the strategy.

£ % % N % e e W w we

efun adjust-weight-incrementally (strat &aux vote direction increment new-welg
(setf increment (/ *initial-incremental-change*
(max 1.0 (/ (strategy-reweights strat)
tincremental-change-decay-ratio*))
))

H

; rewelght upward if strategy voted for the correct candidate, down if
3 it voted against, and leave unchanged if strategy offered no opinion
H
(

setf vote (or (firet (strategy-votes strat))
(caar (strategy-voting-history strat))))

{1f (and vote (vote-correct-vote vote))

(setf direction (signum (vote-score (vote-correct-vote vote)}))
10lse

(setf Airection 0)
)
{setf increment (* increment direction))
)
; now adjust the weight by the specified increment
H
{setf new-weight (* (+ 1.00 (/ increment 100.0)) (strategy-weight strat)))
#+debug (mdtrace 10 *{(adjust-weight-incrementally ~8) --> ~8 (incr -8)"

{strategy-name strat) new-weight increment)

new-weight

;; Yet another simple reweighting strategy: make a fixed-percentage

7: incremantal adjustment each time depending on whether the strategy voted
1; correctly or not. The rescaling which is 4one after each rewaighting

;:; ensures that the weights of highly-accurate strategies do not grow without
17 bound.

139

FE]
(defun fixed-percentage-change (atrat &aux vote direction new-weight increment)
F]
; Treweight upward if strategy voted for the correct candidate, down if
; it voted against, and leave unchanged if strategy offered no opinion
H]
(setf vote (or (first (strategy-votes strat))
{caar (strategy-voting-history strat))))
(1f (and vote (vote-correct-vote vote))
(setf direction (signum (vote-score (vote-correct-vote vote))))
jelse
(setf direction 0)
)
{petf increment (* directicn *fixed-change-increment®))

Y
L4

; now adjust the weight by the specified increment
]
(getf new-welght (* (+ 1.00 (/ increment 100.0)) (strategy-weight strat)))
#+debug (mdtrace 10 " (fixed-percentage-change ~8) --> ~8 (~,2P%)"
(strategy~-name strat) new-weight increment)
new-weight
)

S P i m . T Y P T S S W D D D MBS T T 4 N e . -

;; multiply the weights of all of the specified strategies by a scaling factor
;+ such that the resulting weights have the given average
s: Note: the soptional is a workarocund for a campiler bug which causes
i a runtime error if the desired &key 1s used .
ii
(defun rescale-strategies (&opticnal (avg-weight *default-strategy-welight*)
(constralnte *constraint-strategiest)
(preferences *praference-strategles*)
&aux (gum 0)
(total 0)
{count 0) factor
)

: add up all the reweightable constraints
;
(dolist (const comstraints)
(1f (and (strategy-substrats const) *handle-substrats-individually®)
(dolist (c (strategy-substrats const))
(when (/= (strategy-init-weight c) 0.0}
(inct sum (abs (strategy-weight c)))
(incf total (strategy-init-weight c))
(incf count)

)
:else
(when (/= (strategy-init-weight const) 0.0)
(incf sum (abs (strategy-weight const)))
(incf total (strategy-init-weight const))
(incf count)

)
F
+ add up all the reweightable preferences (there shouldn’t be any unweighted
7 preferences, but we’ll play it safe

H

(

dolist (pref praferences)
(1f (and (strategy-substrats pref) *handle-substrats-individually*)

}

140

{dolist (p (strategy-substrats pref))
(incf sum (abs (strategy-weight p)))
(incf total (abs (strategy-init-weight p)))
(it (/= (strategy-init-weight p) 0.0)
(incf count)
)
)
jelae
(progn
(incf sum (abs (strategy-weight pref)))
{incf total (strategy-init-weight pref))
(if (/= (strategy-init-weight pref) 0.0)
{inct count)
)

)
) .
(if (/= avg-weight *default-strategy-weight®)
(setf total (* avg-weight count))
)
(1f (= sum 0)

(setf factor 1.000) 7 no rurther change if weights total ¢
;else
(setf factor (/ total sum)) ; multiplication factor to adjust

)
{dolist (const constraints)
(if (and (strategy-substrats const) *handle-substrats-individually*)
(dolist (c (strategy-substrats const))
(12 (/= (strategy-init-weight ¢} 0.0}
(setf (strategy-weight c) (* (strategy-weight c) factor))
)
}
10lse
(3£ (/= (strategy-init-weight const) 0.0)
(setf (strategy-welight const) (* (strategy-weight const) factor))
)
)
)
{dolist {pref preferences)
(1f (and (strategy-substrats pref) *handle-substrats-individually*)
{(dolist (p (strategy-substrats pref))
(setf (strategy-weight p) (* (strategy-weigbt p) factor))
)
selse
(setf (strategy-weight pref) (* (strategy-weight pref) factor))
)

)

(setf *total-rescale-factor* (¥ factor *total-rescale-factor*)})

#-nodebug (mdtrace 5 "(rescale-strategies) --> scaled by factor of ~8"
factor)

t

“, ----- S R SR DGR G D S D G A D A R D YR S L e P TD D D D AB A W G D G e G S O T G A D I D D e W A TR N S S G A e A S
; Determine whether the specified vote is so 014 that it is no longer of
37 interest in determining the behavior of the reweighting method.

i

{(defun vote-outdated (vote-list)

(<= (- *sentence-number® (vote-sentence-pumber (first vote-list)))
max-vote-age))

Rt et niinindadebebltee kbt Al bbbttt “———
3; Remove the oldeat votes for the specified strategy
HY
{defun purge-votes (strategy)
#+dedbug (mdtrace 15 *(purge-votes ~8), -D vote~:P"
(strategy-name strategy)
{(length (strategy-voting-history strategy)))
#-debug
{setf (strategy-voting-history strategy)
{delete-1f #’vote-cutdated (strategy-voting-history strategy)))
#+debug
{let (new-hist)
{dolist (vote-list (strategy-voting-history strategy))
(1f (nmot (vote-outdated vote-list))
{push vote-list new-hist)
jelse
(progn
(unintern-struct vote-list)
(mdtrace 25 "purged vote ~8" vote-ligt)

)
)
{setf (strategy-voting-history strategy) (nreverse new-hist))
)
(setf (strategy-voting-hist-len strategy) 0)
(dolist (votes (strategy-voting-history strategy))
(inct (strategy-voting-hist-len strategy) (length votes))
)
#-nodebug (mdtrace 8 "{purge-votes ~S) --> ~D voting record-:P left"
{strategy-name strategy)
{strategy-voting-hist-len strategy))

Remove the oldest votes (those which are no longer of interest) from
the voting history, eo that we don’t waste time examining them while
reweighting atrategies.

efun purge-voting-history (strategies)
#-nodebug (mdtrace 10 ®(purge-voting-history) start®)
(dolist (strategy strategies)
(1£ *handle-substrate~-individually*
(dolist (atrat {(strategy-substrats strategy))
{purge-votes strat)
)
)
{purge-votes strategy)
)
#-nodebug (mdtrace 7 " (purge-voting-histcry) done”)

;73 Dispatch to the desired weight-ccocmputation function, or return the current
1: weight 1f no function is defined
53
(defun new-strategy-weight (strat)
(1f (and *strategy-reweighter* (/= (strategy-init-weight strat) 0.0))
{funcall *strategy-rewelighter* strat)
;else
(strategy-weight strat) ; return unchanged weight if no func
} ; or strategy not weighted

142

Jio=———ees R e L bl el Sreeetnse e ——— e mm e .- ——————

:: Apply the desired reweighting method to the spesciiied resolution strategy

;; Also maintain statistics on the reweighting for the strategy.

i

{defun reweight-strategy {(strat &aux new-weight)

#+debug (mdtrace 9 "(rewaeight-etrategy ~S)" (strategy-name strat))

H

; first, determine how accurate the strategy has been

H

(setf (strategy-accuracy strat) (hit-rate strat))

(setf (strategy-accuracy strat) (percentage (strategy-correct-votes strat)
(strataegy-total-votes strat)
100.0))

~

:

; now invoke the rewelighting method on the strategy
H

{setf new-welght (new-strategy-weight strat))

#1
(1f (and (/= (strategy-weight strat) 0.0) ; prevent strategy frcm being left
(= new-weight 0.0)) 7 out of rescaling
(setf new-weight *least-positive-weight?*)
)
|#

see whether we are increasing or decreasing the weight, and adjust the
statistics accordingly

o~ N W N

cond
((> pew~-weight (strategy-weight strat))
{inef (strategy-reweights-inc strat))
({incf (strategy-reweightg-up strat)
(- new-welght (strategy-weight strat)))
)
{(< pew-weight (strategy-weight strat))
{inct (strategy-reweights-dec astrat))
(incf (strategy-reweights-down strat)
(- (strategy-weight strat) new-weight))
)
)
(inct (strategy-reweights astrat))

.
L4

; finally, update the strategy’s welight

H

{setf (strategy-weight strat) new-weight)

#-nodebug (mdtrace 9 "(reweight-strategy ~S) -~> ~8" {(strategy-name strat)
new-weight)

new-weight

; The actual reweighting mechanism. Call with a completed resolution.

; It performs the following steps:

; apply the desired reweighting method to each constraint and preference
P rescale the strategies to keep the total of all weights constant

: remove outdated voting records

: optionally display the strategy weights to the user

;
d

efun strategy-rewseighter (resoclution)
$-notimer (start-split-timer *reweight-timer?*)
#-nodebug (mdtrace 2 "(strategy-reweighter -S)}" resolution)

143

(when (> *sentence-number~ *reweight-delay®*)
(if *global-reweighting*
sperform multivariate optimization on w1l strategies and store results
3 (future enhancament)
)
(dolist {comst *constraint-strategies*)
(1f (and (strategy-substrats const) *handle-substratg-individually*)
{dolist (¢ (strategy-subgtrats const))
(rewelight-strategy c¢)
)
1else
{reweight-strategy const)
)
)
(dolist (pref *preference-strategles*)
(if (and (strategy-substrats pref) *harndle-substrats-individually®*)
(dolist (p (strataegy-substrats pref))
{reweight-strategy p)
)
:else
(reweight-strategy pref)
)
)
(rescale-strategies)
(1f *display-strat-weights*
{reajsplay~-window *gtrat-weight-window* (build-strat-weight-display))
)
)
{purge-voting-history *constraint-strategies*)
{purge-voting-history *preference-strategies*)
(push resolution *completely-processed-evals®)
#-nodebug (mdtrace 2 "(strategy-reweighter ~S) done” resolution)
#-notimer (stop-split-timer)
t

Jio—~—reweerececcs - e e e e e e e e s e — s e
;7 Perform all initialization2 needed to prepare the reweighter for use.
3
{defun init-reweighting ()

#-notimer (setf *reweight-timer* (create-gplit-timer “"Reweighting®))

#-nodebug (mdtrace 4 "{init-reweighting)®)

(setf *total-rescale-factor®* 1.0)

(1£ *autoload-strat-weights*

(lcad-strategy-weights *auto-strat-weights-filename+)
)

H
;7 initialize the display of current strategy weights if the user reguested
; that display

H
{1f *display-strat-weights*
(saetf *strat-weight-window*
(display-help-window *strat-weights-window-pos*

{build-strat-welght-display)
Resclution Strategy Weightse®
))

)

#-notimer (stop-split-timer)
t

144

Rt de bbbt e . e S e
;3 Perform all cleanup required of the reweighter before terminating.
EE)
{(defun shutdown-reweighting {)

#-notimer (start-split-timer *reweight-timer*)

#-nodsbug (midtrace 4 *{shutdown-reweighting)}®)

{remove-help-window *strat-weight-window*)

{if *autosave-strat-waights*

(save-strategy-weights *auto-strat-weighte-filename*)

)

#-notimer (stop-split-timer)

t
)

;}C‘...QQ.'.'.......Q."'.O'ti.’t'..i.'..'O"Q...t.'.'.Q.Q.O'.O..‘...Q..

;; snd of file reweight.liasp

;’t"t"'ﬁ..""'QQ.'.'..Q.CQ.".ti.t..‘t...t.&'Q'.Q.‘QO..'QQ"..C.'..'.

B.3. Resolution Strategies

K] ".0".*.'0.."..Ot..t..!i‘li.."0"'.0t.tt"..‘.".'..t.t.l..'Q.'Qt...'tt..'t
i:*

PY Ad MABTER-D

I Ad {(Multiple Adaptively-waighted 8TratBglies for Resolving Demonstratives)
3

;;¥ Plle: atrategies.lisp resclution strategies for MASTER-D

7;* Last Bdit: 17 Apr 93

F A

i:% Copyright (c) 1993 Ralf Brown. All Rights Reserved.

;;®* Permission granted for educational and non-copmercial research uses.
;;* Other uses require prior permission by Ralf Brown or the CMU Center

3;* for Machine Translation.

s s ®
:.i.&‘tttt".t.t.'QQQt.t.00.tt.t.l.".'tt.it.ttt't..t.ttt’ttt't.'t'ttt.t'tt.‘tt

[258 2NN 2NN N 2N BN 2N BN B B BN 3

J e e e e e e e e T =

;73 define the substrategies for the local-constraints strategy
3
{defvar *local-const-stratas*)
(setf *local-const-stratsg*
(118t (make-strategy
:name “Gender®
:func ‘gender-constraint
H
{(make~strategy
:name “Number®*
:func ‘number-constraint
}
(make-gtrategy
:name “Animacy"
sfunc ’animacy-constraint
)
(make-strategy
sname *Humanness*®
sfunc ‘humanness-constraint

)
))
R Sttt ettt bttt ittt
;; define the substrategles for the sallence strategy
ii

{defvar *salience-strats*)
{(setf *gsallence-strats*
{list (make-strategy
:tname “"Syntactic Topicalization*®
:func ‘syntactic-topicalization
)
(make-strategy
:name “Focus Preference*
sfunc ‘focus-preference

))

L R itk meemecesaeon sessssmscmmomoan- Semeesss—emess—co-cs-oe-
;3 define the conetraint strategles to be used by the demonstrative

i: resolver. The strategies will be invoked in the order in which they
i3 are listed here.

i?

(defvar *default-constraint-strateglies?)

146

(setf *default-constraint-strategieet*
(1ist (make-strategy
iname “Local Constraints®
1func ‘local-constraints
ssubstrats *local-const-strats*
tdecay-func #’'no-dscay
)
{make-strategy
iname “Case-Role Constraints®
:func ‘case-role~constrainte
)
{make-strategy
iname “"Accessible Referents”
sfunc ‘accessible-referents
tinit-weight 0.0 ; only returns 0 and invalid
sweight 0.0 ; must be same as init-weight
:priming-func ‘primes-accessibility
iupdate-func ‘update-accessibility
)
(make-strategy
:pams "Reference Type"
sfunc ‘reference-type
)
{(make-strategy
iname "World-Model Constraints®
s;fune ‘world-model-~constraints
supdate-func ‘update-world-model
)
»)
(defvar *constraint-strategies* *default-constraint-strategies*)

jim=erveversecccccaa= S el bt L e L T B e mmmee—————
; define the prefaerence strategies used by the demonstrative resolver.
77 'They will be invoked in the order in which they are listed hers.
iz
(defvar *default-preference-strategies*)
(setf *default-preference-strategies*
(1ist (make-strategy
tname “Proximity*
sfunc ‘proximity
)
{make-etrategy
tname "Recency®
sfune ‘recency
toptimize-decay t
1dacay-func #’linear-decay
1decay-speed 0.25
idecays-to -1.0
)
(make-strategy
sname "Case-Role Persistence™
1func ‘case-rale-persistence
soptimize-decay t
1decay~-func #’linear-decay
1decay-speed 0.25
sdecays~-to 0.0
)
(make-strategy
tpame “Salience®
sfunc ‘salisnce
ssubstrats *galience-stratst

147

)
(defvar *preference-strategies* *default-preference-strategies®)

;3 define the strategies to be invokxed when recovering fram a resolution
;3 which resulted in zero candidates remaining. They will be applied in
33 the order in which they are listed here.
H ¥
(defvar *default-recoveryl-strategies*)
(setf *default-recoverylO-gtrategies*
(l1ist (make-strategy
sname "Extralinguistic Reference®
sfunc ‘extralinguistic-reference

)

{make-strategy
sname “*Metonyms*
sfunc ‘metonyms

)

(make-strategy
iname “"Relax Constralnts*
:func ‘relax~constraints
)
))
{dafvar *recoveryld-strategies* ®*default-recoveryl-strategies®)

define the strategies to be invoked when a resolution results in
multiple remaining candidates. They will be invoked in the order
in which they are listed here.

e W W W W
% W W N we

(defvar *default-reccovery2-gstrategies*)
(setf *default-recovery2-strategies*
(l1ist (make~strategy
:name “Ask the User"
sfunc ’‘ask-the-user
)
))
(defvar *racovery2-strategies* *default-recovery2-strategles®)

F¥] (2222322232222 22222 QL2222 22222220 22 X2 2222 22 2222222 222222232 2X22224222122)]

T T L L L L T T T o N L T P L T L Lt 2 T Y)

3+ Given a strategy’s name and a ligt of strategles, return the strategy
s or NIL if it is not among the given list of strategies
i
{defun find-strategy-by-name-aux (name strategies &aux strategy)
(dolist (strat strategies)
{cond
({string-equal name (strategy-name strat))
(setf strategy strat)
(return) ; terminate loop on match
)
{(strategy-subatratg strat)
(dolist (substrat (strategy-substrats astrat))
(wvhen (string-equal name (strategy-name substrat))
(setf strategy substrat)
(return)
)
)
(12 strategy
{return) ; terminate loop on match

))

$i

ii
&
i?

148

Given a strategy‘s name, return the strategy or NIL if it &ces not
axist

(defun find-strategy-by-name (name &aux strategy)

z

; first, scan the constraint strategies and all their substrategies for a
; match with the given name. If no match ig found, repeat the process for
; preferences and recovery strategies until a match is found or we run out
;1 of strategles to check
:
(

cond
((setf strategy (find-strategy-by-name-aux name *constraint-strategies®))

)

({setf strategy (find-strategy-by-name-aux name *preference-strategies®))
)

{(setf strategy (find-strategy-by-name-aux name *recoveryO-strategies*))

)
((setf strategy (find-strategy-by-name-aux name *recovery2-strategiesv))
)
)
#+debug (matrace 20 *(find-strategy-by-name ~8) --»> ~-S" name strategy)
strategy

Determine whether the candidate referent has a compatible gender, and
provide a preference value if so.

(defun gender-constraint (demonstrative candidate

&aux gl g2 score)
(setf gl (gender-of demonstrative))
(setf g2 (gender-of candidate))
(cond
((or (equal gl ’'indet) (equal g2 ‘indet))
;s indeterminate gender matches anything
{setf score 0.0))
((equal gl g2)
3 full weight if identical genders
{setf score 1.0))
((subsetp g2 gl)
; half weight if gender possibilities for demonstrative are
;3 a supearset of the candidate’s possibilities
{setf score 0.5))
((overlap gl g2}
3 Quarter weight if some overlap in possibilities
(setf score 0.25))
(t (setf score ’‘invalid))
)
#-nodebug (mdtrace 8 *({gender-constraint ~8 ~8) ~--> ~S* demonstrative
candidate score)
score

Determine whether the candidate referent has a compatible syntactic
number, and provide a preference value if so.

149

H]
(defun number-constraint {demonstrative candidate
&aux nl n2 score)
(setf nl (number-of demonstrative))
(setf n2 (number-of candidate})
{cond
{(or (equal nl ’indet) (equal n2 ‘indet))
; indeterminate number matches anything
(setf score 0.0))
((equal nl n2)
; assign full weight if identical numbers
(setf score 1.0))
{{subsetp n2 nl)
; half weight if number possibilities for demonstrative are
; a superset of the candidate’s possibilities
(setf score 0.5})
({overlap nl n2)
;7 quarter weight if some overlap in possibilities
(setf score 0.25))
(t (setf score ‘invalid))
)
#-nodebug (mdtrace 8 *(number-constraint ~S8 ~8) --> -8" demonstrative
candidate score)
score

7; Determine whether the candidate referent has a compatible animacy
;; attribute, and provide a preference value if so.
HE]
{(defun animacy-constraint (demonstrative candidate
&aux al a2 gcora)
(setf al (animacy-of demonstrative))
(setf a2 (animacy-of candidate))
(cond
((or (equal al ‘indet) (egqual a2 ’indet))
3 indeterminate animacy matches anything
{setf score 0.0))
{ (equal al a2)
; assign full weight if identical animacies
{setf score 1.0))
((subsetp a2 al)
: half weight if animacy possibilities for demonstrative are
; a superset of the candidate’s possibilities
(setf score 0.5))
((overlap al a2)
; quarter weight if some overlap in possibilities
{setf score 0.25))
{(t (setf score ‘invalid)})
)
#-nodebug (mdtrace 8 *(animacy-constraint -8 -~8) --> ~-8" demonstrative
candidate score)
score
)

' ’ W e e A A S et S WY R DGR Y TR AR AR L R AN L L TR P P LY P T R PR Rl Lt R L B L E Ll D L il kL
1; Determine whether the candidate raferent has a compatible humanness
;7 attribute, and provide a preference value if so.
13
{defun humanness-constraint (demonstrative candidate
&aux hl hl ascore)
(setf hl (humanness demonstrative))

150

(setf h2 (humanness candidate))
{cond
((or (equal hl ’‘indet) (equal h2 ‘indet))
; indeterminate humanness matches anything
{setf score 0.0))
{ (equal bl h2)
; assign full weight if identical
{setf score 1.0))
((subsetp h2 h1l)
+ half waeight if humanness possibilities for demonstrative are
; a superset of the candidate’s possibilities
(setf score 0.5))
({overlap hl h2)
; quarter welight if socme overlap iz possibilities
(setf score 0.25))
(t (setf score ’'invalid))
)
#-nodebug (mdtrace 8 ®(humanness-constraint ~8 ~8) «-> ~§" demonstrative
candidate score)

2COTe

jim—==- et bt i ekt et m——— R e i
37 Apply the local constraint strategies if substrategies are not applied
;7 individually.
tH
(defun local-constraints (demonstrative candidate)
#-nodebug (mdtrace 8 "(local-comnstraints -8 ~-8)* demonstrative candidate)
(apply-substrategies demonstrative candidate *local-const-strats®)

)

;: Determine whether the candidate referent would violate any case~-role
;: constraints imposed by the utterance containing the demonstrative.
P
(defun case-role-constraints (demonstrative candidate
&aux proposition case score)
{setf proposition (proposition-of demonstrative))
(setf case (caserole-of demonstrative proposition))
(1f (compatible-casercole-filler proposition case candidate)
{setf score 0.0) ; no preference, for now
ielse
(setf score ‘invalid)
)
#-nodebug (mdtrace 8 *(case-role-constrainte ~8 ~8) --> ~8" demonstrative
candidate score)
score
)

EE R e b m————— el D el et e uintinded -
;3 Determine whether the candidate referent is deemed accessible by the
37 current state of the discourse model.
il
{defun accessible-referents (demonstrative candidate &aux access score)
(sett access (or (global-candidate-p candidate)
{referent-accessible-p demonstrative candidate)
)
(1f accesa
(1f (numberp access)
(setf score access)
jelpe
{setf score 0.0)

151

)
;else
{setf score ’‘invalid)
)
#-nodebug (mdtrace 8 "(accessible-referents ~§ ~8) --» ~8" demonstrative
candidate score)
acore
)

P e e L L LS L D cesemsconccacea A e e e L D L L
;s Determine what type of reference 1s being made; returns a list of the
;3 possible types or ‘indet if the possibilities cannot be determined
i3 Note: the set of types must be the same as that used by object-type-of
'y balow
H¥]
(defun reference-type-~-of (item &aux types result)

(setf result (get-reftypes item))

(when (not result)

if reftypes was previously set, use its current value;

else, try to figure out the appropriate types and then
ask the user to verify/correct the selected types
and finally store the result ao we don‘t have to ask
again

a mE W N W W

H
(setf types (determine-reference-type item))
(1f (= (length types) 1)
(setf reault types)
;aelse
(setf result (ask-user-for-reference-type item types)})
)
(set-reftypes item result)
)
#+debug (mdtrace 13 ®(reforence-type-of ~8) --> ~8" item result)
result

1+ Determine what type of object the given item 1is; returns a liast of the
:: posaible types or ’‘indet if the possibilities cannot be determined
:; Note: the set of types must be the same as that used by
HY reference-type-of above
:é
(defun object-type-of (item &aux types resuit)
{msetf result (or (get-obitypes itaem) (get-reftypes item)))
{when (not result)
;
; 1f objtypes/reftypes was previocusly set, use the current value;
;3 else, try to figure out the appropriate types and then
: ask the user to verify/correct the selected types
: and finally store the result so we don‘t have to ask
7 again
H
(setf types (determine-object-type item))
(1f (= (length types) 1)
{setf result typas)
;else
(setf result (ask-user-for-entity-type item types))
)
(set-objtypes item result)

)
#+debug (mdtrace 13 *(object-type-of ~S8) --> ~8" item result)

152

result
)

e T T R N R R - - - e - - - - - - = = = - -

33
(defun reference-type (demonstrative candidate &aux rl r2 score)

(setf rl (reference-type-of demonstrative))
(setf r2 (object-type-of candidate))
{(cond
({or {egqual rl ‘indet) (egual r2 ’indet))
: indeterminate ref-type matches anything, »0 no preference
(setf score 0.0))
({equal rl r2)
; assign full weight if identical types
(saetf score 1.0))
({overlap rl r2)
; assign quarter weight if scme overlap in possibilities
(setf score 0.25))
(t (setf score ‘invalid))
)
#-nodebug (mdtrace 8 "(reference-type ~8 ~S) --> ~§" demonstrative
candidate score)
score
)

e - - - - - " - - - - - - o " - A - - - - - -

3 Detearmine whether the candidate referent would viclate any constraints
i+ imposed by the current state of the world model, and provide a preference
;; value if no constraints are violated.

32
(defun world-model~-constraints (demonstrative candidate &aux score relation)

(setf relation (world-model-relation demconstrative candidate))
(if relation

(setf score 0.5) : some preference if a relation exists
;elme
{setf score 0.0) ;7 no preference if no relationship

)

F
3 determine whether the requirements of the demicand violate either the

3 relationship posited by the world model or any other relationships in
; the world model
]

#-nodebug (mdtrace 8 " (world-model-constraints ~8 -8) --> ~8" demonstrative
candidate score)

acore

;: Determine whether the demonstrative and candidate referent have the
i; same conceptual distance (‘near’ vs. ‘far’).
3
(defun proximity (demonstrative candidate &aux pl p2 score scorel)
(setf pl (perceived-spatial-distance-of demonstrative t))
(setf p2 (perceived-spatial-distance-of candidate nil))
(cond
((or (equal pl ’indet) (equal p2 ’'indet))
+ indeterminate distance matches anything
(setf score 0.0))
{(equal pl p2)
¢ assign full weight if identical distances
{setf score 1.0))

153

({subsetp P2 pl)
;s half waight if distance possibilities for demonstrative are
; a superset of the candidate’s possibilities
(setf score 0.5))
((overlap pl p2)
; assign quarter weight if some overlap in possibilities
(setf pcore 0.25))
t (setf score ‘imvalid))
)
{setf pl (perceived-taemporal-distance-of demonstrative t))
(setf p2 (perceived-temporal-distance-of candidate nil))
(cond
((or (equal pl ‘indet) (egual p2 ’‘indet))
; indeterminate distance matches anything
(setf score2 0.0))
((equal pl p2)
¢+ full weight if identical distances
(setf score2 1.0))
((subsgsetp p2 pl)
; balf weight if distance possibilities for demonstrative are
: a superset of the candidate’s possibilities
(setf score2 0.5))
((overlap pl p2)
; assign quarter weight if some overlap in possibilities
{setf scorez 0.25))
(t (setf score2 'invalid))
)
(12 (or (equal score ‘invalid) (equal score2 ‘invalid))
(setf score ‘invalid)

;else
(setf acore (/ (+ score score2) 2.0)) ; take average
)
#-nodebug (mdtrace 8 *(proximity ~S ~8) --> ~S" demonstrative candidate
gcore)
score

)

ji=——-~ewcecccma= et i rermeeno—
:; Determine the distance between the demonstrative and the specified
1: candidate referent.
i3
{defun recency (demonstrative candidate)
{declare (ignore demonstrative candidate))
#-nodebug (mdtrace 8 ”"(recency ~8 ~S) --> 1.0" demonstrative candidate)
1.0 ; always return full weight, decay function handles all changes in
; welght with increasing distance
)

3 T e e e e e o e T e T W 8 o 8 e

:; Determine the strength of the case-role persistence effect for the
:: given candidate referent.
iz
(defun case-role-persistence (demonstrative candidate
&aux case-dem case-cand score)
(declare (ignore demonstrative candidate))
(setf case-dem (caserole-of demonstrative (proposition-of demonstrative)))
(setf case-cand (casercle-of candidate (proposition-of candidate)}))
(12 (equal case-dem cagse-cand)
(setf scora 1.0)
jelse
(setf score 0.0)
)

154

H
; we will always return either the full weight or zero, and allow thas

; decay function to handle the diminighing weight with increasing distance

H

#-nodebuyg (mdtrace 8 "{case-role-persistence ~8 ~8) --> ~8" demonstrative
candidate score)

score

;7 Determine whether the given candidate is syntactically topicalized.
(defun syntactic-topicalization (demonstrative candidate
&aux score tl t2)
{setf tl1 (topicalized-p demonstrative))
(setf t2 (topicalized-p candidate))

{(cond
((and t1 t2) (setf score 1.0) ; full preference if both topicalized
)
(t2 (setf score 0.5) ; half preference if cand. topicalized
)
(t {setf score 0.0) ; no preference otherwise

)
)
#-nodedbug (mdtrace 8 " (syntactic-topicalization -8 ~8) «-> ~8°
demonstrative candidate score)
score
)

A D ettt ittt D D D e hntade kb
;7 Determine whether the given candidate is in the focus of its sentence.
i
{defun focus-preference (daemonstrative candidate
&aux score scorel score2 f£1 £2)
(setf f£f1 (focused-p demonstrative))
(setf £2 (focused-p candidate))

{(cond
({and £1 £2) (setf scorel 1.0) ; full prefersnce if both in focus
)
(£2 (setf acorel 0.5} ; half preference if candid. in focus
)
(t (setf scorel 0.0) ; no preference otherwise

)

)
(setf £1 (number-of-references candidate))

(1£ (> £1 0)
{setf score2 (min 1.0 (log f1)))
;elme

{setf score2 0.0)
)

(setf score (/ (+ scorel scorei) 2)) ; result is average of partial scores
#-nodebug (mdtrace 8 *(focus-preference =8 S) ~--> ~-8*
demonstrative candidate score)
2coOre
}

IR L E L R P e L L 2L Sahandal 2 L T T Y e ey - - - -~ - - -

:; Determine how salient the given candidate referent is.

i}

(defun salience (demonstrative candidate)
#-nodebug (mdtrace 8 "(salience ~8 ~S)" demonstrative candidate)
(apply-substrategies demonstrative candidate *salience-strats®)

155

)

I R it tdb b D AR L S L b DD kbbbt carme—e—— e ————— -
31 (returns a list of the new candidates added during the recovery action)
i3
(defun extralinguistic-reference (res)

(declare (ignore res))

#-nodebug (mdtrace 8 "(extralinguistic-reference)®)

nil ;for now
)

R il wevsreccncas e el Sdnhalt g e mmmmmec e — .
;s (returns a list of the new candidates added during the recovery action)
)
(defun metonyms (res &aux added)

#-nodebug (mdtrace 8 "(metonyms)®)

{dolist (cand (rescl-candidates res))

(dolist (adda (ontoclogical-metonyms cand))
{pushnew add added)

33 {(returns a list of the new candidates added during the recovery action)
(defun relax-constraints (res)

(declare (ignore res))

#-nodebug (mdtrace 8 "(relax-constraints)")

nil ;for now

;2 (returmns the list of candidates remaining after the recovery action)
i3
{defun ask-the-user (res &aux cands result)
#-nodebug (mdtrace 8 " (ask-the-user) start"”)
(setf cands (mapcar #’evalrec-candidate-ref (resol-best-cand res)))
(setf result (ask-user-for-referent res cands))
#-nodebug (mdtrace 8 "(ask-the-user) --> -8" reeult)
result

)

;,..'.C"t.t.'...ttitt.tQ".t..tt'...."...'.'..t.ﬁ..t."..."'...'.itt.

3; end of file strategies.lisp

}’....Q."..'.Q*'.'.'.'Q...'t."'ﬁ....‘.i.t.....*..0‘..".*...‘..'.‘.'..

156

157

Appendix C
Knowledge Base

This appendix contains a portion of the ontology to illustrate its format and the knowledge contained
within it. The extract shown sere consists generally of the top of the heirarchy,

Each node in the ontological heirarchy is represented as a FrameKit frame, and stored in the ontology file
as a make-frame of make-frame~old form, which would allow the ontology to be read into the
system with a simple 1oad statement. For security, MASTER-D reads the file one form at a time and only
evaluates make-frame and make~frame-old forms.

All nodes inherit from their parents via the usual FrameKit inberitance mechanism, allowing many nodes
t0 cowsist of nothing more than an is-a link to tie parent node.

In addition to the is-a slot for inheritance und slots for number, gender, animacy, and similar information,
MASTER-D makes use of several special slots for the world modeler, case-role constraints stratezy, and
reference type strategy. These slots are

® :CRSCONSTRAINTS Specifies the types of fillers permitted for various slots of the frame.

* :MDSREFTYPES Specifies the type of reference which may be made by a demoustrative in
particular circumstances.

¢ :WM$PRECOND Specifies the preconditions on an action.
* :WMSEFFECT Specifies u.e effects on the world model of a particular action.

The first special slot, : CRSCONSTRAINTS, specifies for one or more slots in the frame what values are
permitted to fill each of those slots. The format is a list of lists, with the first element of each sublist
naming the slot and the remaining elements specifying the allowable types. In order for a value to be a
valid filler for a slot, it must be a subclass of at least one of the classes named in the list for that slot. For

example, the kcwledge base entry

(make-frame *make
(is-a *action)
(:crSconstraints (agent *agent))
)

specifies that the filler of the agent slot for any parse frame which is-a *MAKE must be is-a either
*AGENT or a supclass of *AGENT. There are no restrictions on any of the other slots of such a frame. In
addition, inberitance rules ensure that the constraint applies to any frame which is-a any subclass of
*M2KE which does not override the : CRSCONSTRAINTS slot.

158

The :MDSREFTYPES slot in ontology frames specifies the taxonomic classes of fillers for a specified
slot, and thus the allowable reference types for a demonstrative in that position. The format of this slot is a
list of specifications, each consisting of a slot name, a list of allowable reference types, and one or more

slot-value lists. Given the following entry in the ontology,

{(make-frame *mean
{is-a *proposition®*)
(:mdS$reftypes
(theme (lexical-ref discourse-ref proposition)
{(number singular) (distance near))
)
)

the system may infer that the reference type of a demonstrative in the theme slot of a parse frame which
is-a *MEAN is one of lexical, discourse, or propositional reference if the demonstrative is a singular near
demonstrative (i.e. this).

The :WMSPRECOND and :WMSEFFECT slots together provide the information needed by the world
modeler to update its world model. As with the previous special slots, the format is a list of specifications;
for :WM$SPRECOND, the specifications are world model relationships, and for :WMSEFFECT the
specifications are commands to add/delete relations or objects or to set variable bindings. The foliowing
example entry from the kmowledge base shows how to express the idea that theft is the act of taking

possession of something one does not own:

{(make-frame-old *theft
(is-a *action)
(:wméprecond (bind agent :s agent)
(bind theme :s theme)
(not own :v agent :v theme)
(not possess :v agent :v theme))
(:wmSeffect
(assert ownership possess :v agent :v theme))
)

The above frame also shows the use of substitutions. Before actually evaluating the preconditions or
effects, all substitutions are made by replacing occurrences of :S and the following element with the
current value of that slot in the parse frame being processed, and occurrences of :V and the following
element with the current binding of the named variable. The BIND commands shown at the beginning of
the :WMS$PRECOND slot set the variables which are later referenced. For the simple substitutions shown
here, use of a direct slot substitution would be about as fast in execution as the variable binding and
substitution shown here, but a slot specification can be more complicated. When multiple levels of
indirection through frames are involved, it is more efficient to bind the result to a variable if it will be used
multiple times. Not shown here are the : 0 and : R substitutions, which are replaced with the last object(s)
and relation(s), respectively, to be added or deleted by the : WMSEFFECT statements.

For this example, the preconditions specify that there no own or possess relationships between the
agent and theme exist in the current world model. Provided that there is a match (i.c. none of the
preconditions are violated), the specifications in the :WMSEFFECT slot are applied one by one. In this
case, the single specification is to add a new relation to the world model--an ownership relation of type
possess!! between the agent and theme of the action.

'The world model distinguishes between having ag item in one’s possession and owning the item.

159

Knowledge Base
;LastEdit: 19 Apr 93

{make-frame *all

(animate -)

(human -)

(number singular)}

{gender indet)

(1exr$constraints (agent *agent)
{(manner *manner)
(intensity *intensity)
(time *time-gpec)
(size *size)
)

)

{(make-frame *lexical-reference*
(is-a *all)
(gender neuter)
{ :conceptual class lexical-ref)

)

{make-frame *diascourse-reference®*
{is-a *all)
{gender neuter)
(:conceptual_class discourse-ref)
)

(make~-frame *object
(is~a *all)
(animate indet)
(:conceptual_class object)
)

(make-frame "property*
(is-a *all)
(:conceptual_class property)
)

{make-frame *quantity*
(is-a *property*)
)

(make-frame *action
{(is-a *all)
(part-of-speech noun)
{:conceptual_class action)
)

(make~frame *event
{is~-a *all)
(:conceptual_class event)
)

{make~frame *proposition*

160

(is~-a *all}
{:conceptual_class proposition)
)

{(make-frame *time-spec
(is-a *all)
(sconceptual_class temporal)
)

(make-frame *location
(is-a *all)
(:conceptual class locative)
{sconceptual_objtype location)
)

{make~frame *manner
(is-a *property*)
)

{(make-frame *demonstrative*
(reference demonstrative)
)

(make~-frame *this
(is-a *demonstrativer)
(oumber singular)
{(distance near)
(reference demonstrative)
(root *“this*®)
(human -)
)

{(make-frame *that
(is-a *demonstrative?®)
(oumber singular)
(distance far)
{reference damonstrative)
(root *"that*)
(human -~)
)

({make-frame *these
{is-a *demonstrative*)
(number plural)
(distance near)
(reference demonstrative)
{root *these™)
(human) ; override *all
)

(make-frame *thoase
(is-a *demonstrativer)
{(number plural)
(distance far)
(reference demonstrative)
(root "those")
(human) ; override ®*all

161

)

(make-frame *here
(is-a *demonstrative?)
{number singular)
(distance near)
(reference demonstrative)
(Sreftypes$ locative)
(rxoot “here”)
)

{(make-frame *there
(is-a *demonstrative?)
(distance far)
(reference demonstrative)
($reftypes locative)
(root "there")
)

(make~frame *now
{is-a *demonstrative*)
(distance near)
(reference demonstrative)
(Sreftypes$ temporal)
{root "now")

)

(make~-frame *text-string*
(is-a *lexical-reference*)
)

(make-frame *predication*
(is~a *proposition®*)
)

(make-frame *physical-object
(is-a *object)
(:conceptual_objtype physical-ocbject)
)

(make-frame *ment:l-object
(is-a ®*object)
{:conceptual_objtype mental-object)
)

(make-frame *animate-object
{is-a *object)
(animate +)

)

(make~-frame *inanimate-object
(is-a *object)
(animate -)

)

(make-frame *agent
(is~a *animate-object)

162

)

(make~-frame *mankind
(is-a *animate-object)
(instances *person)
)

(make-frame *peraon
(is-a *agent)
(instance-of *mankind)
(human +)
(gender male female)
)

(make-frame *professional-person
(is-a *person)
)

(make-frame *everyone
(is-a *person)
{(number plural)
)

{make-frame speaker
(is-a *persom)
)

(make~frame *lawyer
(is-a *professional-person)
(profession *law)
)

(make-frame *musician
{is~-a *professional-persocn)
{(profession *muaic)
(similar-to *composer)
)

(make~frame *composer
(is-a *professional-person)
(profession *music)
(similar-tc *musician)
)

(make-frame *economist
(is-a *professional-person)
{profession *economy)
)

{make-frame *lobbyist
(is-a *professional-person)
{prefesaion *lobbying)
)

(make-frame *manager
{is-a *professional-person)
(profession *manage)

163

)

(make-frame *place
(is-a *location)
)

(make-frame *council
(is-a *object)
{has-parts *person)
)

(make-frame *text
{(is-a *ipnanimate-cbject)
{(has-parts *phrase *word)
)

{make~-frame *word
(is-a *text)
(part-of *text)
)

(make-frame *letter-of-alphabet
(is-a *text)
(part-of *phrasae)
)

(make-frame *phrase
{is-a *text)
(part-of *text)
(has-parts *letter-of-alphabet)
)

{(make-frame *belief
{is-a *mental-object)
{:conceptual_objtype balief)
)

(make~-frame *user-interface
(1s-a *ipanimate-object)
(has-parts *ui-window *ui-pointer *menu-system *ui-element)
)

(make~frame *display-object
(is-a *inanimate-object)
)

{make-frame *ui-element
(is-~a *display-object)
(part-of *user-interface)
)

{make-frame *ui-window
(is-a *display-object)
(part~-of *user-interface)
)

{make-frame *ui-pointer

164

(is-a *display-object)
(part-of *user-interface)
)

(make-frame *menu-~system
(is-a *display-objact)
(part-of *user-interface)
{has-parts *menu)
)

(make-frame *menu
{(is-a *display-object)
{part-of *menu-system)
(similar-to *menu-bar)
)

{(make-frame *pull-down-menu
{is-a *menu)
)

(make-frame *menu-bar
(is-a *display-object)
(similar-to *menu)
)

{(make~-frame *economy
{is-a *inanimate-object)
(professional *economist)
)

(make-frame *law
(is-a ®*object)
{professional *lawyer)
{similar-to *o-rule)
)

(make-frame *music
{is-a *ipanimate-object)
(professional *musician *composer)
)

(make-frame *musical-composition
(is-a *music)
(has-parts *musical-nota)
)

(make-frame *symphony
(is-a *musical-composition)
(has-~parts *symphonic-movement)
)

(make-frame *musical-note
{is-a *inanimate-object)
{part-of *musical-composition)
)

(make-frame *symphonic-movement

165

(is-a *musical-composition)
{part-of *symphony)
)

(make-frame *software
(is~a *object)
)

(make-frame *Lotus-1-2-3
(ia-a *goftware)
(similar-to *Lotus-Corporation)
)

(n ke-frame *question
{is-a *object)
(:cr$constraints (theme *propositiont*))

¥

{make-frame *lobbying
(is-a *object)
{professional *lobbyilst)
)

{make-frame *creator
(is-a *agent)
)

{make~frame *company
(is-a *agent)
)

(make-frame *accept
(is-a *action)
(:md$reftypes (object (propesition)
{theme *booclean-value))
)
)

{make~-frame *a-reward
(is-a *actionm)
(:criconstraints (agent *agent) (patient *agent)
(theme *object *action *event *propocsition®))
)

(make-frame *take
(is-a *action)
(:cr$constralnts (agent *agent) (object *object)
{location *location))

(:wm$precond (location :any :s theme :8 goal))

{:wm$effect (bind obj :8 obj)
{(add nil :v obj) ; make sure obj is in w-model
(retract location :any :v obj) ; ob] no longer there
(assert location nil :v obj :8 goal)
(assert ownership possess :s agent :v obj)
)

166

(make-frame *throw
(is-a *action)
{scr$constraints (agent *agent) {(object ®*object)
(goal *location))

)

{make-frame *support
{is-a *action)
(:1cr$constraints (theme *object) (intensity *intensity))

)

{make-frame *look
(is-a *action)
{(xoot "look"™)
)

(make-frame *look-at
(is-a *action)
(root "look at")
(:md$reftypes (theme (cbject locative))
)
)

(make-frame *speak
(is-a *action)
(root “speak")
(:cr$constraints (agent *agent) (manner *manner))
(:md$reftypes (theme (proposition discourse-ref lexical-ref))
)
)

(make~frame *to-duplicate
(is-a *action)
{(zcr$constraints (agent *agent) (theme *object *action))

)

(make-frame *move
(is-a *action)
(:cr$constraints (agent *agent) (theme *ocbject)
(goal *location))

(:wm$precond (not location :any :s theme 318 goal))

{(:wn$effect (bind obj :s theme) ; obj is filler of theme slot
(add nil :v obj) ; make sure obj is in w-model
(retract location :any :v obj) ; obj no longer there
(assexrt location nil :v obj s goal)
)

)

(make-frame *a-give
(is-a *action)
{:cxr$constraints (agent *agent) (theme *object) (patient *agent)
(goal *location})

(:wm$precond (not location :any :s theme :8 goal))

(:wm$effaect (bind obj :8 theme) ; obj is filler of theme slot
(add nil :v obj) ; make sure obj is in w-model
(retract location :any :v obj) ; obj no longer there
(assert location nil :v obj :s goal)

167

)

(make-~frame *theft
{is-a *action)
(:wm$precond (bind agent :8 agent)
(bind theme :s theme)
(not own :v agent :v thame)
{(not possess :v agent :v theme)
)
{:wvmS$effect (assert ownership possess :v agent :v theme))
)

(make~frame *beliave
(is-a *action)
(:cr$constraints (agent *agent)
{theme *belief *proposition*)
{time *time-spec)
(location *location)
)
(:md$reftypes (theme (object proposition))
)
(:wm$effact (add belief :s3 themse)
(assert believe nil :8 agent :0)
)
)

{make-frame *go-to

(is-a *action)

{:wm$precond (location :any :s agent :8 location))

(:vm$effect (add goal :8 goal) ; ensure goal in wm
(retract location :any :8 agent)
(agsert location nil :s agent :s8 goal)
)

)

{make-frame *put
{is-a *action)
{:wm$precond (ownership possess :8 agent :1a object))
{:wm$effect (retract ownership possess :s agent :s object)
(assert location nil :s object :a8 goal)
)
)

(make-frame *know
{is-a *action)
(:wvm$effact (add know :s thems)
(assert believe know :s8 agent :0)
)
)

(make-frame *let
(is-a *action)
(similar-to *allow)
)

{make-frame *allow

168

(is-a *action)
{similar-to *let)
)

(make-frame *manage
(is-a *action)
(professional *manager)

)

(make~-frame *is
(is-a *predication*)
(:md$reftypes (object (lexical-ref)
(thema *taext))
{cbject (proposition)
(theme *boclean-value))
)
)

(make~-frame *located-in
(is-a *predication®*)
(:md$reftypes (cbiect {(object))
(location (locative))
)
)

{wake-frame *boolean-value
(is-a *predication*)
)

{make-frame *true
(is-a *boolean-value)
)

(make-frame *false
(is~a *boolean-value)

)

(make~-frame *mean
(is-a *propositiont*)

(:md$reftypes (theme (lexical-ref discourse-ref proposition)
(number singular) (distance near))

)
)

(make-frame *discussion
{(is-a tevent)
)

(make-frame *present
{is-a *time-spec)
)

(make-frame *today
(is~a *time-spec)
)

(make-frame *direction

169

(is-a *location)
(:conceptual_objtype direction)
)

{make-frame *country
(is-a *location)
)

{make-frame *between
{(is-a *location)
(tcr$constrainta (subject *location *objaect)
(object *location *object))
(similar-to *among)
)

{make-frame *among
{is-a *location)
(:cxr$constraints (subject *location ®*object)
(object *location *object))
(similar-to *between)
)

(make-frame *USA
(1s-a *country)
(has-parts *state-of-USA)
)

(make-frame *gtate-of-USA
(is-a *inanimate-object)
{part-of *USA)
)

(make~-frame *p-fundamental
(is-a *property*)
)

(make-frame *color
(is-a *property®*)
)

(make~-frame *size
(is-a *property®*)
)

(make-frame *guality*
{is-a *property®*)
)

170

1m

Appendix D
Sample Texts

The following example text was used for the trace in Appendix A, as well as for testing during most of

MASTZR-D’s

development. The numbers to the left indicate the paragraph and sentence numbers in the

ori 1.nal text from which the example was excerpted.
34.2 The commicrt is made in this document *Against UI Copyright’:

35.1 Copyright on a user interface means a goverment-imposed monopoly on its use.
35.2 This would mean that each typewriter manufacturer would be forced to arrange the keys

differenty.

36.1 (omitted) I think that’s a very simplistic description.
36.2 By my description, the letters of the alphabet would be tools.
36.3 Of course those should be open.

The remainder of this append‘ lists the example text used for the main tests described in Chapters 9 and
10. As for the previous text, the numbers at the left indicate paragraph and sentence; bowever, some of the
original sentences bave becu split into multiple sentences, which remain groups under the original sentence
number. Additionally, several sentences and small portions of others have bee~ ~* {ed; this is indicated by
square brackets.

23.1.
232,

233.
234.
235.
23.6.

23.7.
238.

239.

I'm going to try to talk specifically about intellectual property protection in software.

{’ve been asked to play ¢ tole. That role is the advocate of strong protection, which is
something like the sacred acolytes at Chichen Itza. Those acolytes were asked to take the
role for a year at the end of wk.ch they get thrown into the sacred pit.

That’s my feeling here tonight, anyway.

But I'm a brave if foolish lad, so I'm going to take the challenge heartily.

I’m going to make two disclaimers:

While I. m very much behind tne Lotus position, I am speaking tonight as an individual, not
as au Ofiicer of Lotus,

I say that by choice. I wasn’t asked to say that.

Secondly, I'm not a lawyer; I’ve locked at this from the standpoint of a business persen, and
I want to say (you can believe me or not) I've thought about these issues as seriously as I
know how from the standpoint not only of a large company, but fromn the standpoint of
small companies as well.

I take my job as a trustee of -he Massachusetts Software Council very seriously, o “0ok at
small and large companies all the time.

172
23.10. So, right or wrong, I'm trying to think in that mode.

24.1. Significance of this issue:

24.2. This is really a mammoth issue.

24.3. Decisions and feelings and positions taken today will have, I believe, major impact on the
world.

24.4. That's a strange phrase for a business person to ever utter.

24.5. We're usually thinking about market shares and points of margin.

24.6. This is re=lly a fundamental, economic, and quality of life issue, 1 believe.

25.1. Why?

25.2. Well, first of all, I want to start with a statement that some people may dispute, but it’s a
place that’s a sort of bedrock for me.

25.3. I believe property protection is fundamental to the proper functioning of socicties.

25.4. Two or three years ago, I might have stood up here and said to the proper functioning of
capitalist societies.

25.5. 1think right now that statement would be too narrow.

25.6. You can go to almost any country in the world and people would say the management of
property is important to how society functions in any form of society.

25.7. If that statement is taken as true the following statment is an important one. [,one that
people may not agree with.]

258. And that is that if property protection is fundamental to the proper functioning of societies,
then intellectual property managment, intellectual property protection, is a critical issue
today for everyone,

25.9. And there’s a number of reasons why that’s true.

25.10. First of all, the notion that property can be only physical, material, corporeal, is an
incredibly burdensome and frightening notion to me.

25.11. To say that someone who can manufacture a widget has the right to property protection but
that someone who writes a symphony does not seems to me to be a very troubling notion.
This would reduce the very creative people in society to the state of having to depend on
powerful patrons who own the material world.

25.12. So to me it’s critical in order to recognize the higher achievements of man, and also, from
a much more narrow perspective, it's important in understanding how countries, states,
and individuals will prosper in the world economy to come.

25.13. [To put it very blundly,] if we don’t have intellectual property protection, we are giving up
some very, very important positioning for our state, our country, our industry in the world
sconomy, because intellectual property is the best property we’ve got.

25.14. We are very poorly positioned to compete in the physical world coming down the road; we
are very well positioned to compete in the intellcctual and spiritual domain, I believe.

25.15. Itis an urgent issue today in global competition in the way that companies are battling with
each other, positioning with each other, and in the way that countries are positioning with
each other.

25.16.
25.17.

25.18.

173

This is a fact.

Taiwan, Singapore, Italy--there are companies there manufacturing blatant copies of works
done in this country. {parse actually written as: There are companies in
Taiwan,Singapore,and Ita'y manufacturing blatant copies of works done in this country.)
There is significant lobbying going on by countries who have an advantage from a
cost/production standpoint in the material domain to reduce intellectual property to a
commodity that can be freely copied and reverse engineered.

25.19. Ibelieve that’s extremely dangerous and important.
25.20. That’s why I think this is an issue with great significance.

26.1.

26.2.
26.3.
26.4.
26.5.
26.6.
26.7.

26.8.
269.

26.10.

26.11.

26.12.

26.13.

26.14.

24.15.
26.16.
26.17.
26.18.

Well, if intellectual property protection is important, the question is, how should it be
managed to the best ends, what are the boundaries, what is the degree of intensity?

1 think you have to look at the goals.

What do we really want to do in society in regards to intellectnal property protection?

First, we want to reward the creator of value for the customer [, for the consumer].

That's where we have to start in our explication of value.

It’s customer value; it’s consumer value.

Related to that, the idea is that you should have law [and implementation of law] that will

continue to develop value for customers in the ongoing manner.

And that says to me that you want to continually incent entrepreneurial initiative.

The French economist Seay wrote that:

"The entrepreneur takes resources from an area of lower productivity and moves them to
an area of higher productivity.”

That’s what defines an entrepreneur.

Innovation is a specific tool, Drucker says, of the entrepreneur, in which we create new
resources or improve the use of resources.

To me that process of entrepreneurial innovation is essential, and what intellectual property
law has to do is to enable startups to flourish on the one hand, to make sure that continual
innovation is able to happen with very low barriers to entry. At the same time [(and I
think that this is an equivalent good)] it must enable successful companies to flourish.

Those two things are both important. Any application of law that only makes it possible
for brand new companies to start up may sound romantically very correct but I think
practically will be disastrous, because it will mean that the software industry is capped
effectively at $10 million or $20 million or $30 millice companies [, which will shift the
burden of power back to those companies which have huge scale; that is to say, the
hardware manufacturers]. This is a troubling notion for me.

The third goal, I believe, is that we want to punish theft.

That’s a hard statement. I made it consciously.

I thought about softening it up iur this group; I thought about making it "prevent theft.”

But then I thought about that; that’s how you get into fascism, when you try io preveat bad
behavior.

174

26.19. What we’re really saying is that if you do this, then if everyone in society’s mechanism

decides it's wrong, then you ought to get punished for it.

26.20. Now theft is a very strong term. I'll come back to that term.

27.1.
27.2.
273.
274,

27.5.

216.

27.7.

278.
2709.

27.10.

27.11.

27.12.

27.13.

27.14.

27.15.

27.16.

28.1.

Well, if those are the goals, how do you figure out what to protect?

1 think the question that starts is, Where does customer value come from in software?

These are simple words, but I think you have to start in simple principles.

Software enables customers to accomplish something in a particular way[, by specific
means).

I think that the particular way in which software enables someone 10 do something deserves
some kind of protection without getting into how much or what the means are because I
think those are very tough questions.

We'd like them to be simple; they’re hard, and this is new stuff,

The rules for defining what is protectable and what should be protectable need to be
developed; they are not developed.

And there is a debate today between two schools of thought.

One school of thought says let copyright law sort it out through the application of case
history, which looks at all of these suits that are in process now; that is very important for
building the accretion of experience that will make a really meaningful law in ten or
fifteen years[, which is the way the law works].

"You look back and you look at music, for example;] it took 20 or 30 years of copyright
application before the case law gave us a viable framework [, which I think most
musicians today would agree is largely a viable framework].

People understand it. There’s room for innovation, and [like software,] there’s room for
copying, because the creative musician cannot be afraid of a two-five-one progression.

You must be allowed to have a two-five-one progression but he’s oot allowed to have a
complete sequence of notes and intervals that duplicate someone else’s melody.

That’s the domain-specific kind of information that gets developed {over years of case law,
when you figure out who was thieving and what drove them, and how did they behave,
and what are the domain-specific concerns of that area of music versus painting versus
film.]

So this debate between "let case law precedence sort it out,” and "it’s never going to work,
copyright is wrong or copyright is bad, we need a new policy and we need it now,” which
scares a lot of people like me[, more than anything because we're in a very vulnerable
period in the world around the subject of intellectual property protection.]

New laws take a lot of time to draft, and no matter how well we draft the new law around
software protection, it's going to take 20 or 30 years of case law in that domain to make it
work.

Whether we like that or not, that’s how the law works.

So let’s look at these customer value sources in software.

282,

28.3.
284.

28.5.

28.6.
28.7.

288.

28.9.

175

1 think these are seven that I've come up with[, having been in the software business for ten
years of s0}.

There are others, I’'m sure.

1 think that the customer derives value when using a piece of software [from things as varied
as the way that the software designer conceived of the problem solution from the actual
function in the product; of course, the ability to add, subtract, multiply and divide, in
1-2-3, for example.]

A third area of value derivation is that which enables the user to achieve the desired result--
the user interface.

And 1'll come back to this in detail.

Fourth there are what I like to call conceptual data structures which the user is tanght or
which are illuminated to the user, provided to the user, and the user then uses.

In 1-2-3, for example, there’s the concept of a range to describe a set of values in a cartesian
coordinate system; Excel has a similar concept called the array.

Then there is the actual internal implementation.

28.10. [For example, the algorithms, intemnal data structures, code detail--the actual writing of the

28.11.

28.12.

28.13.

28.14.

28.15.

28.16.

28.17.

28.18.

29.1.

292,

code.]

This value also comes from bundled data, that comes with the program codel; things like
fonts, font outlines].

[Also, for example, marketing information, or typesetter width tables.]

Ang then finaily, value comes from usability with other hardware and software.

There are many others, I'm sure.

Each one of these is a topic in itself [, and what I’ ve just made by, in our community today,
is that we're all fighting about "Is protection needed or is protection not needed; is it
good or bad?"]

And we really should be working on the very hard work of detailing the policy on each of
these areas.

And maybe I'm wrong about what the areas are, but there’s a lot of really hard work in
answering this challenge.

I believe the information technology community needs to guide society [-the judges, the
legislators, and so on--] on how to provide the proper kind of protection, and the proper
degree of protection, for each of those sources of customer value, so that we have the
desired result; and that is to both allow successes to flourish (that is an extremely
important principle, 1 believe, [in terms of developing ongoing guality and excellence]),
and also, making it such that the barriers to entry are not so high that small companies
cannot enter the market.

Let’s talk specifically about an area that I think is subject right now to a massive amount of
misinformation and disinformation.
And I'm very happy to have been given my prop bere when I came in, "Against User
Interface Copyright,” which I think misses exactly some of the points that I would like to
focus on.

29.3.

30.1.
30.2.

30.3.

304.

30.5.

30.6.

30.7.

30.8.
309.

31.1L
312.

31.3.
314.

315.

31.6.
31.7.
318.
319.

176
And this is not a setup because [had done my foils before[; I promise].

What is user interface?

This is obviously matter for debate and discussion, but I would say that the user interface
does consist of tools such as pull-down menus, moving cursor menu bars, and so on; it
consists of conventions [{the MacUser Interface Style Guide; the many -onventions
around the use of 1-2-3, such as the moving ring cursor)]; it also consists of inventions,
things that didn’t exist before (stuff that came out of PARC—everyone has some idea of
that).

But most important, 1 believe, user interface has to do with the uses of those tools to solve a
particular problem.

[It’s not that a pull-down menu doesn’t do much for me; it's whea I pull it down, what’s in
there: What words are chosen, what functions are available to me?}

To me, a way to describe it is a user interface is a creative expression of an idea, of bow best
to enable a user to achieve something in a particular way.

And the way that that happens is 1) by using UI tools like the pull-down; 2) vv adopting, by
flouting, or by proposing new conventions; and 3) occasionally by inventing a Ul
technique, something that just doesn’t exist--it’s unique.

But I think especially, a user interface is the sum total of that which enables access to the
program function by linking your usage of those Ul elements [(tools and conventions)]
and the program resource, the program data structure.

It’s the program function: It’s the bolistic merging of those things.

That’s not a nice tidy description of what a Ul is, but I think in reality that’s what it is, and,
unfortunately, we're going to bave to help develop a case law that deals with that soft and
fungible nature of software. ‘

So what should be protectable in Ul technology?

This is my position, not Lotus Development Corporation (I don’t think we would differ
much).

Basic tools, we believe, should be open.

I think that it has been very convenient to sort of think that Lotus hasn’t taken that position;
Lotus has never argued that the moving cursor, the menu bar, or the inverted 'L’ were
Lotus inventions. {Lotus} never argued that at all, and still don’t.

We are supporting the UT’s, like the Mac UI, like Windows, like PM. We believe in that
stuff,

Tools should be open.

Conventions should be voluntary.

People should put them out.

You pay the price in the Mac world if you don’t adhere to the Ul convention.

31.10. True invention, I believe, should be protectable.
31.11. Someone who comes up with a brand new way of doing something should have some kind

of protection.

31.12.
31.13.
31.14.
31.15.

31.16.

31.17.

32.1.

322.

323,
324.

325.

32.6.

327.

32.8.

33.1.
33.2.

333.
334.

335.

336.

h

177

I myseif feel very very nervous about patenting in software.

I don’t know what the right levels are.

But I think that at some level an inventor ought to be able to be rewarded and have some
protection.

But I do think that the integration of the Ul element application--how you use this total
sum of tools and conventions in their total effect--should be protectable.

That is, how the program enables the user to accomplish something in a particular way. {At
some level, some way, we have to figure it out,] a person has got to be rewarded for that
or the structure’s going to break down.

[And unfortunately, not very nice from a political standpoint], the work, the devil, is in the
detail and in the degree; and there’s a lot of hard work that’s going to get required o sort
these problems out.

Now, to give you an idea of what I mean by this sum total: This is the 1-2-3 release 2.01
menu system. This is the entire menu.

Now people say, "Oh, you guys are suing those guys because they used the same top level
menu bar.”

T've left out one menu here, [which is graph,] That’s this page.

This is about 97 or 98 percent of all the program structure and all the user interface access in
1-2-3.

Every single node [--every single node--] on these two slides is present in exactly the same
place, and exactly the same detail in the two products that we sued.

This is not a question of "They used a moving cursor menu bar. We don’t like that.”

This is a question of taking all the work that was donpe, [all the engagement with the
customers, all the refinement and testing,] and then taking the documentation and using
that as your functional spec.

If this is not within the bounds of protection, then we have a very interesting world ahead.

Final slide.

[As I said to someone on the way over here, "If I'm going to wear a target, it’s going to be
fluorescent red."]

Suitability of copyright.

I believe personally (I'm not a lawyer) that (but I'm a musician; that’s what I was doing
before I came to this business, and it works for me) the concept of idea and expression,
[which is fundamental to copyright,] to me is a very good analogy (maybe not perfect; 1
haven’t heard a better one) for functionality implementation; for doing something in a
particular way; for doing the same thing in the same way.

Copyright also has a proven ability to meet industry-specific or domain-specific needs over
time via the accretion of case history.

There is substantial value in the current copyright law and case history to guide decision
making. [, and finally,] The application of this law can be influenced by community
leaders, and I don’t just mean industry.

178

33.7. I mean academia. Imean users, customers, all the people who care.

33.8. So I think that it’s a viable vehicle. I am concemed at this particular moment when the
world order is changing so dramatically and intellectual protection laws are about to be
signed or agreed to among many nations, that if we in the States who are driving that
movement suddenly lose our conviction about intellectual property protection, I know
very specifically what that’s going to mean to my company and to other companies.

33.9. [It’s going to mean major losses to us from people who see a good opportunity not to come
to terms with the intellectual property demands of the US and the other Western
countries; we'll just go without.}

34.1. [Just a comment--] I won't go through in detail, but there's a statement in here that I think
clucidates some of the apparent difference in opinion which I think is not really germane.
34.2. The comment is made in this document "Against Ul Copyright™:

35.1 Copyright on a user interface means a goverment-imposed monopoly on its use.
35.2 This would mean that each typewriter manufacturer would be forced to arrange the keys
differently.

36.1 I think that’s a very simplistic description.
36.2 By my description, the letters of the alphabet would be tools.
36.3 Of course those should be open.

(1}

21

3]

(4]

{51

(6]

7

(8]

93

10}

i1

179

Appendix E

References

H. Alshawi.
Memory and Context for Language Interpretation.
Cambridge University Press, 1987.

F. Boas.
Handbook of American Indian Languages, Part 1.
Scholarly Press, 1911, 1976.

P. Bosch.
Agreement and Anaphora: A Study of the Role of Pronouns in Syntax and Discourse.
Academic Press, 1983.

B. Bower.
Clues to the brain’s knowledge systems.
Science News 142, 1992.

R.D. Brown.
Using Multiple Adaptively-weighted Strategies for the Resolution of Demonstratives.
PhD thesis, Camnegie Mellon University, 1993.

RD. Brown.
Augmentation,
Machine Translation (formerly Computers and Translation) 4:129-147, 1989.

RD. Brown and S. Nirenburg.

Human-Computer Interaction for Semantic Disambiguation.

In Proceedings of the 13th International Conference on Computational Linguistics, pages 42-47.
Helsinki, Finland, 1990.

K. Biihler.
Sprachtheorie: Die Darstellungsfunktion der Sprache.
Gustav Fischer Verlag, 1934, 1965.

K. Biihler.

The Deictic Field of Language and Deictic Words.

Speech, Place, and Action: Studies in Deixis and Related Topics.
In RJ. Jarvella and W. Klein,

John Wiley and Sons, 1982.

R.N. Campbell.
Noun Substitutes in Modern Thai.
Morton, 1969.

1.G. Carbonell and R.D. Brown.

Anaphora Resolution: A Multi-Strategy Approach.

In Proceedings of the Twelfth International Joint Conference on Computational Linguistics, pages
96-101. COLING '88, August 1988.

[12]

(13}

(14]

(15]

[16]

7

{18]

(19]

(20]

(21]

(22]

[23)

[24]

PAY

[26]

180

DM. Carter.
A Shallow Processing Approach to Anaphor Resolution.
Technical Report Technical Report No. 88, University of Cambridge Computer Laboratory, 1986.

D. Carter.
Interpreting Anaphors in Natural Language Texts.
Ellis Horwood Limited, 1987.

A.C. Clarke and G. Lee.
The Garden of Rama.
Bantam Books, 1991,

ALC. Clarke and G. Lee.
Rama Il.
Bantam Books, '989.

D.A. Dahl

Focusing and Reference Resolution in PUNDIT.

In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 1083-1088.
AAAI-86, 1986.

D.A.Dahl.
personal communication.
November, 1990,

D.A.Dahl
personal communication,
January, 1991.

M.A. Gemnsbacher and S. Shroyer.

Signalling Importance in Spoken Narratives: The Cataphoric Use of the Indefinite 7his.

In Program of the Tenth Annual Conference of the Cognitive Science Society, pages 587-593.
Cognitive Science Society, 1988.

B.A. Goodman.

Reparing Reference Identification Failures by Relaxation.

In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics, pages
204-217. ACL’85, 1985.

B.A. Goodman.
Reference Identification and Reference Identification Failures.
Computational Linguistics 12(4):273-305, 1986.

BJ. Grosz and C.L. Sidner.
Attention, Intentions, and the Structure of Discourse.
Computational Linguistics 12(3):175-204, 1986.

E. Hajitov4, V. Kuboli, and P. Kuboh.

Stock of Shared Knowledge -- A Tool for Solving Pronominal Anaphora.

In Proceedings of the Fifteenth International Conference on Computational Linguistics
(COLING-92), pages 127-133. 1992,

J. Hant, Jr. and B. Gordon.
Nerual Subsystems for Ob,2ct Knowledge.
Nature 359.60-64, 1992.

J. Hintikka and J. Kulas.
Anaphora and Definite Descriptions.
D. Reidel Publishing Company, 1985.

G. Hirst.
Semantic Interpretation and the Resolution of Ambiguity.
Cambridge University Press, 1987.

27

(28]

[29]

(30}

31

321

[33]

(34]

[35]

[36]

371

[38]

(39]

(40]

181

F. Ingari, M. Kapor, J. Landry, T. Lemberg, and R. Davis.

Intellectual Property in Computing: (How) Should Software be Protected? An Industry Perspective.
Transcript of panel discussion.

October, 1990

H. Kamp.

A Theory of Truth and Semantic Representation,
Formal Methods and the Study of Language, Part 1.
In J. Groenendijk, T. Janssen, and M. Stokhof,
Mathematisch Centrum, 1981.

H. XKamp.

A Theory of Truth and Semantic Representation.
Truth, Interpretation, and Information.

In J. Groenendijk, T. Janssen, and M. Stokhof,
Foris, 1984,

JR.R. Leavitt.
The DimBs User's Guide Version 1.0.
Technical Memorandum, Carmegie Mellon University Center for Machine Translation, 1990.

S. LuperFoy.

personal communication.
February, 1991,

S. LuperFoy and E. Rich.
A Computational Model for the Resolution of Context Dependent References.
1990.

S.W. McRoy.
Using Multiple Knowledge Sources for Word Sense Discrimination,
Computational Linguistics 18(1):1-30, 1992,

Brain Transplant.
PBS television series Nova.
April, 1993

E. Nyberg.
FrameKit User’s Guide.
Technical Memorandum, Carnegie Mellon University Center for Machine Translation, 1988.

M.S. Palmer, D.A. Dahl, RJ. Schiffman, L. Hirschman, M. Linebarger, and J. Dowding.

Recovering Implicit Information.

In Proceedings of the 24th Annual Meeting of the Association for Computational Linguistics, pages
10-19. ACL’86, 1986.

T. Reinbart.
Cruom Helm Linguistics Series. Anaphora and Semantic Interpretation.
Croom Helm, 1983.

E. Rich and S. LuperFoy.

An Architecture for Anaphora Resolution.

In Proceedings of the Second Conference on Applied Natural Language Processing, pages 18-24.
ACL, 1988.

AL. Samuel.
Some Studies in Machine Learning Using the Game of Checkers.
IBM Journal of Research and Development 3(3), 1959.

AL. Samuel.
Some Studies in Machine Learning Using the Game of Checkers II. Recent Progress.
IBM Journal of Research and Development 11(6), 1967.

182

[41) E. Sapir and H. Hoijes.
The Phonology and Morphology of the Navaho Language.
Univerity of California Press Berkeley, 1967.

[42) CL. Sidner.
Towards a Computational Theory of Definite Anaphora Comprehension.
Technical Report TR-537, M1.T. Artificial Intelligence Laboratory, 1979.

f43] C.L.Sidner.
Focusing in the Comprehension of Definite Anaphora.
Compuasional Models of Discourse.
In Brady and Berwick,
M.LT. Press, 1983, pages 267-330.

[44] M. Tzschaschel
Zwei Augen im Gesicht--und viele Augen im Gehim.
P.M.: Peter Moosleitner’s interessantes Magazin :58-64, 12/1991.

[45] B.L.Webber.
Discourse Deixis: Reference to Discourse Segments.
In Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics, pages
113-122. ACL’88, 1988.

[46] Y.A.Wikks.
Preference Semantics.
The Formal Semantics of Natural Language.
In Keenan, E.,
Cambridge University Press, 1975, pages 329-348.

471 Y.A Wilks,
Making Preferences More Active.
Artificial Intelligence 11:197-223, 1978.

